55 research outputs found

    Proportions of Convective and Stratiform Precipitation Revealed in Water Isotope Ratios

    Get PDF
    Tropical and midlatitude precipitation is fundamentally of two types, spatially-limited and high-intensity convective or widespread and lower-intensity stratiform, owing to differences in vertical air motions and microphysical processes governing rain formation. These processes are difficult to observe or model and precipitation partitioning into rain types is critical for understanding how the water cycle responds to climate changes. Here, we combine two independent data sets – convective and stratiform precipitation fractions, derived from the Tropical Rainfall Measuring Mission satellite or synoptic cloud observations, and stable isotope and tritium compositions of surface precipitation, derived from a global network – to show that isotope ratios reflect rain type proportions and are negatively correlated with stratiform fractions. Condensation and riming associated with boundary layer moisture produces higher isotope ratios in convective rain, along with higher tritium when riming in deep convection occurs with entrained air at higher altitudes. Based on our data, stable isotope ratios can be used to monitor changes in the character of precipitation in response to periodic variability or changes in climate. Our results also provide observational constraints for an improved simulation of convection in climate models and a better understanding of isotope variations in proxy archives, such as speleothems and tropical ice

    Reductions in ozone at high concentrations of stratospheric halogens

    Full text link
    An increase in the concentration of inorganic chlorine to levels comparable to that of oxidized reactive nitrogen could cause a significant change in the chemistry of the lower stratosphere leading to a reduction potentially larger than 15% in the column density of ozone. This could occur, for example by the middle of the next century, if emissions of man-made chlorocarbons were to grow at a rate of 3% per year. Ozone could be further depressed by release of industrial bromocarbon

    Future global warming from atmospheric trace gases

    Full text link
    Human activity this century has increased the concentrations of atmospheric trace gases, which in turn has elevated global surface temperatures by blocking the escape of thermal infrared radiation. Natural climate variations are masking this temperature increase, but further additions of trace gases during the next 65 years could double or even quadruple the present effects, causing the global average temperature to rise by at least 1 °C and possibly by more than 5 °C. If the rise continues into the twenty-second century, the global average temperature may reach higher values than have occurred in the past 10 million years. © 1986 Nature Publishing Group

    Distribution Analysis of Hydrogenases in Surface Waters of Marine and Freshwater Environments

    Get PDF
    Background Surface waters of aquatic environments have been shown to both evolve and consume hydrogen and the ocean is estimated to be the principal natural source. In some marine habitats, H2 evolution and uptake are clearly due to biological activity, while contributions of abiotic sources must be considered in others. Until now the only known biological process involved in H2 metabolism in marine environments is nitrogen fixation. Principal Findings We analyzed marine and freshwater environments for the presence and distribution of genes of all known hydrogenases, the enzymes involved in biological hydrogen turnover. The total genomes and the available marine metagenome datasets were searched for hydrogenase sequences. Furthermore, we isolated DNA from samples from the North Atlantic, Mediterranean Sea, North Sea, Baltic Sea, and two fresh water lakes and amplified and sequenced part of the gene encoding the bidirectional NAD(P)-linked hydrogenase. In 21% of all marine heterotrophic bacterial genomes from surface waters, one or several hydrogenase genes were found, with the membrane-bound H2 uptake hydrogenase being the most widespread. A clear bias of hydrogenases to environments with terrestrial influence was found. This is exemplified by the cyanobacterial bidirectional NAD(P)-linked hydrogenase that was found in freshwater and coastal areas but not in the open ocean. Significance This study shows that hydrogenases are surprisingly abundant in marine environments. Due to its ecological distribution the primary function of the bidirectional NAD(P)-linked hydrogenase seems to be fermentative hydrogen evolution. Moreover, our data suggests that marine surface waters could be an interesting source of oxygen-resistant uptake hydrogenases. The respective genes occur in coastal as well as open ocean habitats and we presume that they are used as additional energy scavenging devices in otherwise nutrient limited environments. The membrane-bound H2-evolving hydrogenases might be useful as marker for bacteria living inside of marine snow particles

    Measurements of selected C2-C5 hydrocarbons in the background troposphere: Vertical and latitudinal variations

    Get PDF
    Meridional cross sections of the concentration of light hydrocarbons are reported. They were obtained from 20. April to 10. May, 1980, during the French research flight STRATOZ II, and cover the latitudes between 60° N and 60° S and the altitudes between 800 mb and 200 mb. The mixing ratios of ethane, ethene, acetylene, propane, propene, n-butane, i-butane, n-pentane, and i-pentane range between 2.0 and 0.02 ppb. Globally, a decrease in concentration with increasing altitude and -in most cases-with decreasing latitude is observed. In addition the 2-dimensional concentration fields show structures of different scales. In particular, isolated maxima of high concentrations are found in the upper troposphere. They point to fast vertical transport between the boundary layer and the upper troposphere. In the present case these maxima seem to be correlated with large scale meteorological systems, such as low pressure regions or the Inter Tropical Convergence Zone. It is argued that the NMHC provide a set of tracers well suited to the detection of fast vertical transport

    Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation

    No full text
    The most important chemical cleaning agent of the atmosphere is the hydroxyl radical, OH. It determines the oxidizing power of the atmosphere, and thereby controls the removal of nearly all gaseous atmospheric pollutants. The atmospheric supply of OH is limited, however, and could be overcome by consumption due to increasing pollution and climate change, with detrimental feedback effects. To date, the high variability of OH concentrations has prevented the use of local observations to monitor possible trends in the concentration of this species. Here we present and analyse long-term measurements of atmospheric OH concentrations, which were taken between 1999 and 2003 at the Meteorological Observatory Hohenpeissenberg in southern Germany. We find that the concentration of OH can be described by a surprisingly linear dependence on solar ultraviolet radiation throughout the measurement period, despite the fact that OH concentrations are influenced by thousands of reactants. A detailed numerical model of atmospheric reactions and measured trace gas concentrations indicates that the observed correlation results from compensations between individual processes affecting OH, but that a full understanding of these interactions may not be possible on the basis of our current knowledge of atmospheric chemistry. As a consequence of the stable relationship between OH concentrations and ultraviolet radiation that we observe, we infer that there is no long-term trend in the level of OH in the Hohenpeissenberg data set
    • …
    corecore