71 research outputs found

    Canonical circuit quantization with linear nonreciprocal devices

    Full text link
    Nonreciprocal devices effectively mimic the breaking of time-reversal symmetry for the subspace of dynamical variables that they couple, and can be used to create chiral information processing networks. We study the systematic inclusion of ideal gyrators and circulators into Lagrangian and Hamiltonian descriptions of lumped-element electrical networks. The proposed theory is of wide applicability in general nonreciprocal networks on the quantum regime. We apply it to pedagogical and pathological examples of circuits containing Josephson junctions and ideal nonreciprocal elements described by admittance matrices, and compare it with the more involved treatment of circuits based on nonreciprocal devices characterized by impedance or scattering matrices. Finally, we discuss the dual quantization of circuits containing phase-slip junctions and nonreciprocal devices.Comment: 12 pages, 4 figures; changes made to match the accepted version in PR

    Quantum Simulator for Transport Phenomena in Fluid Flows

    Get PDF
    Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.Comment: 8 pages, 3 figure

    Transition from discrete to continuous time of arrival distribution for a quantum particle

    Full text link
    We show that the Kijowski distribution for time of arrivals in the entire real line is the limiting distribution of the time of arrival distribution in a confining box as its length increases to infinity. The dynamics of the confined time of arrival eigenfunctions is also numerically investigated and demonstrated that the eigenfunctions evolve to have point supports at the arrival point at their respective eigenvalues in the limit of arbitrarilly large confining lengths, giving insight into the ideal physical content of the Kijowsky distribution.Comment: Accepted for publication in Phys. Rev.

    Sources of quantum waves

    Get PDF
    Due to the space and time dependence of the wave function in the time dependent Schroedinger equation, different boundary conditions are possible. The equation is usually solved as an ``initial value problem'', by fixing the value of the wave function in all space at a given instant. We compare this standard approach to "source boundary conditions'' that fix the wave at all times in a given region, in particular at a point in one dimension. In contrast to the well-known physical interpretation of the initial-value-problem approach, the interpretation of the source approach has remained unclear, since it introduces negative energy components, even for ``free motion'', and a time-dependent norm. This work provides physical meaning to the source method by finding the link with equivalent initial value problems.Comment: 12 pages, 7 inlined figures; typos correcte

    The Coherence of Primordial Fluctuations Produced During Inflation

    Full text link
    The behaviour of quantum metric perturbations produced during inflation is considered at the stage after the second Hubble radius crossing. It is shown that the classical correlation between amplitude and momentum of a perturbation mode, previously shown to emerge in the course of an effective quantum-to-classical transition, is maintained for a sufficiently long time, and we present the explicit form in which it takes place using the Wigner function. We further show with a simple diffraction experiment that quantum interference, non-expressible in terms of a classical stochastic description of the perturbations, is essentially suppressed. Rescattering of the perturbations leads to a comparatively slow decay of this correlation and to a complete stochastization of the system.Comment: LaTeX (7 pages
    corecore