7 research outputs found

    KIAA1109 Variants Are Associated with a Severe Disorder of Brain Development and Arthrogryposis.

    Get PDF
    Whole-exome and targeted sequencing of 13 individuals from 10 unrelated families with overlapping clinical manifestations identified loss-of-function and missense variants in KIAA1109 allowing delineation of an autosomal-recessive multi-system syndrome, which we suggest to name Alkuraya-Kučinskas syndrome (MIM 617822). Shared phenotypic features representing the cardinal characteristics of this syndrome combine brain atrophy with clubfoot and arthrogryposis. Affected individuals present with cerebral parenchymal underdevelopment, ranging from major cerebral parenchymal thinning with lissencephalic aspect to moderate parenchymal rarefaction, severe to mild ventriculomegaly, cerebellar hypoplasia with brainstem dysgenesis, and cardiac and ophthalmologic anomalies, such as microphthalmia and cataract. Severe loss-of-function cases were incompatible with life, whereas those individuals with milder missense variants presented with severe global developmental delay, syndactyly of 2nd and 3rd toes, and severe muscle hypotonia resulting in incapacity to stand without support. Consistent with a causative role for KIAA1109 loss-of-function/hypomorphic variants in this syndrome, knockdowns of the zebrafish orthologous gene resulted in embryos with hydrocephaly and abnormally curved notochords and overall body shape, whereas published knockouts of the fruit fly and mouse orthologous genes resulted in lethality or severe neurological defects reminiscent of the probands' features.This article is freely available via Open Access. Click on the Additional Link above to access the full-text via the publisher's site

    A De Novo 8q22.2q22.3 Interstitial Microdeletion in a Girl with Developmental Delay and Congenital Defects

    No full text
    Background and Objectives: Only nine patients with interstitial de novo 8q22.2q22.3 microdeletions have been reported to date. The objective of this report is to present clinical features of a new patient with an 8q22.2q22.3 microdeletion, to compare her phenotype to other previously reported patients, and to further expand the phenotype associated with this microdeletion. Materials and Methods: We describe an 8½-year-old girl with developmental delay, congenital hip dysplasia, a bilateral foot deformity, bilateral congenital radioulnar synostosis, a congenital heart defect, and minor facial anomalies. Results: Chromosomal microarray analysis revealed a 4.9 Mb deletion in the 8q22.2q22.3 region. De novo origin was confirmed by real-time PCR analysis. Conclusions: Microdeletions in the 8q22.2q22.3 region are characterized by moderate to severe intellectual disability, seizures, distinct facial features and skeletal abnormalities. In addition to one already reported individual with an 8q22.2q22.3 microdeletion and unilateral radioulnar synostosis, this report of a child with bilateral radioulnar synostosis provides additional evidence, that radioulnar synostosis is not an incidental finding in individuals with an 8q22.2q22.3 microdeletion. Additional patients with similar microdeletions would be of a great importance for more accurate phenotypic description and further analysis of the genotypic-phenotypic relationship

    The Clinical and Genetic Spectrum of 82 Patients With RAG Deficiency Including a c.256_257delAA Founder Variant in Slavic Countries

    Get PDF
    Background: Variants in recombination-activating genes (RAG) are common genetic causes of autosomal recessive forms of combined immunodeficiencies (CID) ranging from severe combined immunodeficiency (SCID), Omenn syndrome (OS), leaky SCID, and CID with granulomas and/or autoimmunity (CID-G/AI), and even milder presentation with antibody deficiency. Objective: We aim to estimate the incidence, clinical presentation, genetic variability, and treatment outcome with geographic distribution of patients with the RAG defects in populations inhabiting South, West, and East Slavic countries. Methods: Demographic, clinical, and laboratory data were collected from RAG-deficient patients of Slavic origin via chart review, retrospectively. Recombinase activity was determined in vitro by flow cytometry-based assay. Results: Based on the clinical and immunologic phenotype, our cohort of 82 patients from 68 families represented a wide spectrum of RAG deficiencies, including SCID (n = 20), OS (n = 37), and LS/CID (n = 25) phenotypes. Sixty-seven (81.7%) patients carried RAG1 and 15 patients (18.3%) carried RAG2 biallelic variants. We estimate that the minimal annual incidence of RAG deficiency in Slavic countries varies between 1 in 180,000 and 1 in 300,000 live births, and it may vary secondary to health care disparities in these regions. In our cohort, 70% (n = 47) of patients with RAG1 variants carried p.K86Vfs*33 (c.256_257delAA) allele, either in homozygous (n = 18, 27%) or in compound heterozygous (n = 29, 43%) form. The majority (77%) of patients with homozygous RAG1 p.K86Vfs*33 variant originated from Vistula watershed area in Central and Eastern Poland, and compound heterozygote cases were distributed among all Slavic countries except Bulgaria. Clinical and immunological presentation of homozygous RAG1 p.K86Vfs*33 cases was highly diverse (SCID, OS, and AS/CID) suggestive of strong influence of additional genetic and/or epigenetic factors in shaping the final phenotype. Conclusion: We propose that RAG1 p.K86Vfs*33 is a founder variant originating from the Vistula watershed region in Poland, which may explain a high proportion of homozygous cases from Central and Eastern Poland and the presence of the variant in all Slavs. Our studies in this cohort of RAG1 founder variants confirm that clinical and immunological phenotypes only partially depend on the underlying genetic defect. As access to HSCT is improving among RAG-deficient patients in Eastern Europe, we anticipate improvements in survival
    corecore