603 research outputs found

    On quantum non-signalling boxes

    Full text link
    A classical non-signalling (or causal) box is an operation on classical bipartite input with classical bipartite output such that no signal can be sent from a party to the other through the use of the box. The quantum counterpart of such boxes, i.e. completely positive trace-preserving maps on bipartite states, though studied in literature, have been investigated less intensively than classical boxes. We present here some results and remarks about such maps. In particular, we analyze: the relations among properties as causality, non-locality and entanglement; the connection between causal and entanglement breaking maps; the characterization of causal maps in terms of the classification of states with fixed reductions. We also provide new proofs of the fact that every non-product unitary transformation is not causal, as well as for the equivalence of the so-called semicausality and semilocalizability properties.Comment: 18 pages, 7 figures, revtex

    Rapid analysis of Förster resonance energy transfer by two-color global fluorescence correlation spectroscopy: Trypsin proteinase reaction

    Get PDF
    AbstractIn this study we introduce the combination of two-color global fluorescence correlation spectroscopy (2CG-FCS) and Förster resonance energy transfer (FRET) as a very powerful combination for monitoring biochemical reactions on the basis of single molecule events. 2CG-FCS, which is a new variation emerging from the family of fluorescence correlation spectroscopy, globally analyzes the simultaneously recorded auto- and cross-correlation data from two photon detectors monitoring the fluorescence emission of different colors. Overcoming the limitations inherent in mere auto- and cross-correlation analysis, 2CG-FCS is sensitive in resolving and quantifying fluorescent species that differ in their diffusion characteristics and/or their molecular brightness either in one or both detection channels. It is able to account for effects that have often been considered as sources of severe artifacts in two-color and FRET measurements, the most prominent artifacts comprising photobleaching, cross talk, or concentration variations in sample preparation. Because of its very high statistical accuracy, the combination of FRET and 2CG-FCS is suited for high-throughput applications such as drug screening. Employing beam scanning during data acquisition even further enhances this capability and allows measurement times of <2s. The improved performance in monitoring a FRET sample was verified by following the protease cleavage reaction of a FRET-active peptide. The FRET-inactive subpopulation of uncleaved substrate could be correctly assigned, revealing a substantial portion of inactive or missing acceptor label. The results were compared to those obtained by two-dimensional fluorescence intensity distribution analysis

    Transforming quantum operations: quantum supermaps

    Full text link
    We introduce the concept of quantum supermap, describing the most general transformation that maps an input quantum operation into an output quantum operation. Since quantum operations include as special cases quantum states, effects, and measurements, quantum supermaps describe all possible transformations between elementary quantum objects (quantum systems as well as quantum devices). After giving the axiomatic definition of supermap, we prove a realization theorem, which shows that any supermap can be physically implemented as a simple quantum circuit. Applications to quantum programming, cloning, discrimination, estimation, information-disturbance trade-off, and tomography of channels are outlined.Comment: 6 pages, 1 figure, published versio

    Activating NPPT distillation with an infinitesimal amount of bound entanglement

    Get PDF
    We show that bipartite quantum states of any dimension, which do not have a positive partial transpose, become 1-distillable when one adds an infinitesimal amount of bound entanglement. To this end we investigate the activation properties of a new class of symmetric bound entangled states of full rank. It is shown that in this set there exist universal activator states capable of activating the distillation of any NPPT state.Comment: 4 pages, revtex4, 1 figure, references correcte

    Better detection of Multipartite Bound Entanglement with Three-Setting Bell Inequalities

    Full text link
    It was shown in Phys. Rev. Lett., 87, 230402 (2001) that N (N >= 4) qubits described by a certain one parameter family F of bound entangled states violate Mermin-Klyshko inequality for N >= 8. In this paper we prove that the states from the family F violate Bell inequalities derived in Phys. Rev. A, 56, R1682 (1997), in which each observer measures three non-commuting sets of orthogonal projectors, for N >=7. We also derive a simple one parameter family of entanglement witnesses that detect entanglement for all the states belonging to F. It is possible that these new entanglement witnesses could be generated by some Bell inequalities.Comment: Revtex4, 1 figur

    Canonical Decompositions of n-qubit Quantum Computations and Concurrence

    Full text link
    The two-qubit canonical decomposition SU(4) = [SU(2) \otimes SU(2)] Delta [SU(2) \otimes SU(2)] writes any two-qubit quantum computation as a composition of a local unitary, a relative phasing of Bell states, and a second local unitary. Using Lie theory, we generalize this to an n-qubit decomposition, the concurrence canonical decomposition (C.C.D.) SU(2^n)=KAK. The group K fixes a bilinear form related to the concurrence, and in particular any computation in K preserves the tangle ||^2 for n even. Thus, the C.C.D. shows that any n-qubit quantum computation is a composition of a computation preserving this n-tangle, a computation in A which applies relative phases to a set of GHZ states, and a second computation which preserves it. As an application, we study the extent to which a large, random unitary may change concurrence. The result states that for a randomly chosen a in A within SU(2^{2p}), the probability that a carries a state of tangle 0 to a state of maximum tangle approaches 1 as the even number of qubits approaches infinity. Any v=k_1 a k_2 for such an a \in A has the same property. Finally, although ||^2 vanishes identically when the number of qubits is odd, we show that a more complicated C.C.D. still exists in which K is a symplectic group.Comment: v2 corrects odd qubit CCD misstatements, reference chapter for KAK v3 notation change to coincide with sequel, typos. 20 pages, 0 figure

    A priori probability that a qubit-qutrit pair is separable

    Full text link
    We extend to arbitrarily coupled pairs of qubits (two-state quantum systems) and qutrits (three-state quantum systems) our earlier study (quant-ph/0207181), which was concerned with the simplest instance of entangled quantum systems, pairs of qubits. As in that analysis -- again on the basis of numerical (quasi-Monte Carlo) integration results, but now in a still higher-dimensional space (35-d vs. 15-d) -- we examine a conjecture that the Bures/SD (statistical distinguishability) probability that arbitrarily paired qubits and qutrits are separable (unentangled) has a simple exact value, u/(v Pi^3)= >.00124706, where u = 2^20 3^3 5 7 and v = 19 23 29 31 37 41 43 (the product of consecutive primes). This is considerably less than the conjectured value of the Bures/SD probability, 8/(11 Pi^2) = 0736881, in the qubit-qubit case. Both of these conjectures, in turn, rely upon ones to the effect that the SD volumes of separable states assume certain remarkable forms, involving "primorial" numbers. We also estimate the SD area of the boundary of separable qubit-qutrit states, and provide preliminary calculations of the Bures/SD probability of separability in the general qubit-qubit-qubit and qutrit-qutrit cases.Comment: 9 pages, 3 figures, 2 tables, LaTeX, we utilize recent exact computations of Sommers and Zyczkowski (quant-ph/0304041) of "the Bures volume of mixed quantum states" to refine our conjecture

    Identification of an α(1→6) mannopyranosyltransferase (MptA), involved in Corynebacterium glutamicum lipomanann biosynthesis, and identification of its orthologue in Mycobacterium tuberculosis

    Get PDF
    Corynebacterium glutamicum and Mycobacterium tuberculosis share a similar cell wall architecture, and the availability of their genome sequences has enabled the utilization of C. glutamicum as a model for the identification and study of, otherwise essential, mycobacterial genes involved in lipomannan (LM) and lipoarabinomannan (LAM) biosynthesis. We selected the putative glycosyltransferase-Rv2174 from M. tuberculosis and deleted its orthologue NCgl2093 from C. glutamicum. This resulted in the formation of a novel truncated lipomannan (Cg-t-LM) and a complete ablation of LM/LAM biosynthesis. Purification and characterization of Cg-t-LM revealed an overall decrease in molecular mass, a reduction of α(1→6) and α(1→2) glycosidic linkages illustrating a reduced degree of branching compared with wild-type LM. The deletion mutant's biochemical phenotype was fully complemented by either NCgl2093 or Rv2174. Furthermore, the use of a synthetic neoglycolipid acceptor in an in vitro cell-free assay utilizing the sugar donor β-d-mannopyranosyl-1-monophosphoryl-decaprenol together with the neoglycolipid acceptor α-d-Manp-(1→6)-α-d-Manp-O-C8 as a substrate, confirmed NCgl2093 and Rv2174 as an α(1→6) mannopyranosyltransferase (MptA), involved in the latter stages of the biosynthesis of the α(1→6) mannan core of LM. Altogether, these studies have identified a new mannosyltransferase, MptA, and they shed further light on the biosynthesis of LM/LAM in Corynebacterianeae
    corecore