951 research outputs found

    Exploring Multiculturalism as a Dynamic Factor for Spurring the New Economy, Particularly Present Within Port Cities

    Get PDF
    Cities are widely recognized as the preferred places for cultural production and interactions, with their ability to agglomerate high-skilled workers and talented people, and to host services and knowledge infrastructures connected through formal and informal networks. They stand at the intersection points of both physical connections, including passenger travels and trade of goods and non-physical relations. The paper starts from the acknowledgment that innovation comes out as a consequence of these networks, triggering the economic growth and making cities attractive and competitive. It will then investigate the role of the human capital, as the current best productive asset, that acquires a new value in virtue of the social capital. The aim is to demonstrate that multiculturalism is an innovative, dynamic factor for development necessary for cities to thrive, that is particularly present within port cities. These nodes of transportation and relational networks, in fact, are embedded into several activities that go far beyond their boundaries and emerge as places of conflicts, but also of innovation and progress. In order to support the discussion, this contribution will explore the Innovation District of Boston as a significant case study, since, with its strong multiculturalism within a port environment that is deeply changing, the area is favoring the new economy of innovation. The results of the study will highlight the challenging character of stressing multiculturalism in a general climate of mistrust, intolerance and fear and will recognize the fact that in the era of the human capital there is an important element linked to connections, both physical (transportation links) and relational (social capital), that have the ability to transform the look of cities, opening up new opportunities to grow and use the human capital in unexpected ways. A set of possible future scenarios of policies will be proposed as well, considering the diversity added value and the prioritization of physical and relational connections

    A functional analysis of change propagation

    Get PDF
    A thorough understanding of change propagation is fundamental to effective change management during product redesign. A new model of change propagation, as a result of the interaction of form and function is presented and used to develop an analysis method that determines how change is likely to propagate. The analysis produces a Design Structure Matrix, which clearly illustrates change propagation paths and highlights connections that could otherwise be ignored. This provides the user with an in-depth knowledge of product connectivity, which has the potential to support the design process and reduce the product's susceptibility to future change

    Religious Attitudes and Charitable Donations

    Get PDF
    Forthcoming Journal of Applied Business and EconomicsNonprofit organizations play a vital role in the United States, often providing goods and services to populations where no alternative is available. We expand the understanding of nonprofit management by focusing on the influence of an individual’s religious attitude on their charitable donations. Using a survey of 1,530 households, we find that religiously conservative individuals contribute more than liberals both in terms of support to religiously affiliated nonprofits and total donations to nonprofit organizations. The findings of this study hold important implications for nonprofits in terms of the types of services they provide and the stipulations placed upon service recipients

    The ideal gas as an urn model: derivation of the entropy formula

    Full text link
    The approach of an ideal gas to equilibrium is simulated through a generalization of the Ehrenfest ball-and-box model. In the present model, the interior of each box is discretized, {\it i.e.}, balls/particles live in cells whose occupation can be either multiple or single. Moreover, particles occasionally undergo random, but elastic, collisions between each other and against the container walls. I show, both analitically and numerically, that the number and energy of particles in a given box eventually evolve to an equilibrium distribution WW which, depending on cell occupations, is binomial or hypergeometric in the particle number and beta-like in the energy. Furthermore, the long-run probability density of particle velocities is Maxwellian, whereas the Boltzmann entropy lnW\ln W exactly reproduces the ideal-gas entropy. Besides its own interest, this exercise is also relevant for pedagogical purposes since it provides, although in a simple case, an explicit probabilistic foundation for the ergodic hypothesis and for the maximum-entropy principle of thermodynamics. For this reason, its discussion can profitably be included in a graduate course on statistical mechanics.Comment: 17 pages, 3 figure

    Even obligate symbioses show signs of ecological contingency: Impacts of symbiosis for an invasive stinkbug are mediated by host plant context

    Get PDF
    Many species interactions are dependent on environmental context, yet the benefits of obligate, mutualistic microbial symbioses to their hosts are typically assumed to be universal across environments. We directly tested this assumption, focusing on the symbiosis between the sap‐feeding insect Megacopta cribraria and its primary bacterial symbiont Candidatus Ishikawaella capsulata. We assessed host development time, survival, and body size in the presence and absence of the symbiont on two alternative host plants and in the insects\u27 new invasive range. We found that association with the symbiont was critical for host survival to adulthood when reared on either host plant, with few individuals surviving in the absence of symbiosis. Developmental differences between hosts with and without microbial symbionts, however, were mediated by the host plants on which the insects were reared. Our results support the hypothesis that benefits associated with this host–microbe interaction are environmentally contingent, though given that few individuals survive to adulthood without their symbionts, this may have minimal impact on ecological dynamics and current evolutionary trajectories of these partners

    Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized xenon interphase exchange NMR

    Full text link
    We demonstrate a minimally invasive nuclear magnetic resonance (NMR) technique that enables determination of the surface-area-to-volume ratio (S/V) of soft porous materials from measurements of the diffusive exchange of laser-polarized 129Xe between gas in the pore space and 129Xe dissolved in the solid phase. We apply this NMR technique to porous polymer samples and find approximate agreement with destructive stereological measurements of S/V obtained with optical confocal microscopy. Potential applications of laser-polarized xenon interphase exchange NMR include measurements of in vivo lung function in humans and characterization of gas chromatography columns.Comment: 14 pages of text, 4 figure

    The XMM-Newton survey of the Small Magellanic Cloud: XMMUJ005011.2-730026 = SXP214, a Be/X-ray binary pulsar

    Get PDF
    In the course of the XMM-Newton survey of the Small Magellanic Cloud (SMC), a region to the east of the emission nebula N19 was observed in November 2009. To search for new candidates for high mass X-ray binaries the EPIC PN and MOS data of the detected point sources were investigated and their spectral and temporal characteristics identified. A new transient (XMMUJ005011.2-730026= SXP214) with a pulse period of 214.05 s was discovered; the source had a hard X-ray spectrum with power-law index of ~0.65. The accurate X-ray source location permits the identification of the X-ray source with a ~15th magnitude Be star, thereby confirming this system as a new Be/X-ray binary.Comment: 8 pages 11 figures. Accepted for publication in MNRA

    Investigating the relationship between mitochondrial genetic variation and cardiovascular-related traits to develop a framework for mitochondrial phenome-wide association studies

    Get PDF
    BACKGROUND: Mitochondria play a critical role in the cell and have DNA independent of the nuclear genome. There is much evidence that mitochondrial DNA (mtDNA) variation plays a role in human health and disease, however, this area of investigation has lagged behind research into the role of nuclear genetic variation on complex traits and phenotypic outcomes. Phenome-wide association studies (PheWAS) investigate the association between a wide range of traits and genetic variation. To date, this approach has not been used to investigate the relationship between mtDNA variants and phenotypic variation. Herein, we describe the development of a PheWAS framework for mtDNA variants (mt-PheWAS). Using the Metabochip custom genotyping array, nuclear and mitochondrial DNA variants were genotyped in 11,519 African Americans from the Vanderbilt University biorepository, BioVU. We employed both polygenic modeling and association testing with mitochondrial single nucleotide polymorphisms (mtSNPs) to explore the relationship between mtDNA variants and a group of eight cardiovascular-related traits obtained from de-identified electronic medical records within BioVU. RESULTS: Using polygenic modeling we found evidence for an effect of mtDNA variation on total cholesterol and type 2 diabetes (T2D). After performing comprehensive mitochondrial single SNP associations, we identified an increased number of single mtSNP associations with total cholesterol and T2D compared to the other phenotypes examined, which did not have more significantly associated SNPs than would be expected by chance. Among the mtSNPs significantly associated with T2D we identified variant mt16189, an association previously reported only in Asian and European-descent populations. CONCLUSIONS: Our replication of previous findings and identification of novel associations from this initial study suggest that our mt-PheWAS approach is robust for investigating the relationship between mitochondrial genetic variation and a range of phenotypes, providing a framework for future mt-PheWAS
    corecore