55 research outputs found
Adaptive multi-class Bayesian sparse regression - An application to brain activity classification
International audienceIn this article we describe a novel method for regularized regression and apply it to the prediction of a behavioural variable from brain activation images. In the context of neuroimaging, regression or classification techniques are often plagued with the curse of dimensionality, due to the extremely high number of voxels and the limited number of activation maps. A commonly-used solution is the regularization of the weights used in the parametric prediction function. It entails the difficult issue of introducing an adapted amount of regularization in the model; this question can be addressed in a Bayesian framework, but model specification needs a careful design to balance adaptiveness and sparsity. Thus, we introduce an adaptive multi-class regularization to deal with this cluster-based structure of the data. Based on a hierarchical model and estimated in a Variational Bayes framework, our algorithm is robust to overfit and more adaptive than other regularization methods. Results on simulated data and preliminary results on real data show the accuracy of the method in the context of brain activation images
Multiclass Sparse Bayesian Regression for fMRI-Based Prediction
Inverse inference has recently become a popular approach for analyzing neuroimaging data, by quantifying the amount of information contained in brain images on perceptual, cognitive, and behavioral parameters. As it outlines brain regions that convey information for an accurate prediction of the parameter of interest, it allows to understand how the corresponding information is encoded in the brain. However, it relies on a prediction function that is plagued by the curse of dimensionality, as there are far more features (voxels) than samples (images), and dimension reduction is thus a mandatory step. We introduce in this paper a new model, called Multiclass Sparse Bayesian Regression (MCBR), that, unlike classical alternatives, automatically adapts the amount of regularization to the available data. MCBR consists in grouping features into several classes and then regularizing each class differently in order to apply an adaptive and efficient regularization. We detail these framework and validate our algorithm on simulated and real neuroimaging data sets, showing that it performs better than reference methods while yielding interpretable clusters of features
Total variation regularization for fMRI-based prediction of behaviour.
International audienceWhile medical imaging typically provides massive amounts of data, the extraction of relevant information for predictive diagnosis remains a difficult challenge. Functional MRI (fMRI) data, that provide an indirect measure of taskrelated or spontaneous neuronal activity, are classically analyzed in a mass-univariate procedure yielding statistical parametric maps. This analysis framework disregards some important principles of brain organization: population coding, distributed and overlapping representations. Multivariate pattern analysis, i.e., the prediction of behavioural variables from brain activation patterns better captures this structure. To cope with the high dimensionality of the data, the learning method has to be regularized. However, the spatial structure of the image is not taken into account in standard regularization methods, so that the extracted features are often hard to interpret. More informative and interpretable results can be obtained with the '1 norm of the image gradient, a.k.a. its Total Variation (TV), as regularization. We apply for the first time this method to fMRI data, and show that TV regularization is well suited to the purpose of brain mapping while being a powerful tool for brain decoding. Moreover, this article presents the first use of TV regularization for classification
A Comparative Study of Algorithms for Intra- and Inter-subjects fMRI Decoding
International audienceFunctional Magnetic Resonance Imaging (fMRI) provides a unique opportunity to study brain functional architecture, while being minimally invasive. Reverse inference, a.k.a. decoding, is a recent statistical analysis approach that has been used with success for deciphering activity patterns that are thought to fit the neuroscientific concept of population coding. Decoding relies on the selection of brain regions in which the observed activity is predictive of certain cognitive tasks. The accuracy of such a procedure is quantified by the prediction of the behavioral variable of interest - the target. In this paper, we discuss the optimality of decoding methods in two different settings, namely intra- and inter-subject kind of decoding. While inter-subject prediction aims at finding predictive regions that are stable across subjects, it is plagued by the additional inter-subject variability (lack of voxel-to-voxel correspondence), so that the best suited prediction algorithms used in reverse inference may not be the same in both cases. We benchmark different prediction algorithms in both intra- and inter-subjects analysis, and we show that using spatial regularization improves reverse inference in the challenging context of inter-subject prediction. Moreover, we also study the different maps of weights, and show that methods with similar accuracy may yield maps with very different spatial layout of the predictive regions
Excessive visual crowding effects in developmental dyscalculia
Visual crowding refers to the inability to identify objects when surrounded by other similar items. Crowding-like mechanisms are thought to play a key role in numerical perception by determining the sensory mechanisms through which ensembles are perceived. Enhanced visual crowding might hence prevent the normal development of a system involved in segregating and perceiving discrete numbers of items and ultimately the acquisition of more abstract numerical skills. Here, we investigated whether excessive crowding occurs in developmental dyscalculia (DD), a neurodevelopmental disorder characterized by difficulty in learning the most basic numerical and arithmetical concepts, and whether it is found independently of associated major reading and attentional difficulties. We measured spatial crowding in two groups of adult individuals with DD and control subjects. In separate experiments, participants were asked to discriminate the orientation of a Gabor patch either in isolation or under spatial crowding. Orientation discrimination thresholds were comparable across groups when stimuli were shown in isolation, yet they were much higher for the DD group with respect to the control group when the target was crowded by closely neighbouring flanking gratings. The difficulty in discriminating orientation (as reflected by the combination of accuracy and reaction times) in the DD compared to the control group persisted over several larger target flanker distances. Finally, we found that the degree of such spatial crowding correlated with impairments in mathematical abilities even when controlling for visual attention and reading skills. These results suggest that excessive crowding effects might be a characteristic of DD, independent of other associated neurodevelopmental disorders
A supervised clustering approach for extracting predictive information from brain activation images
International audienceIt is a standard approach to consider that images encode some information such as face expression or biomarkers in medical images; decoding this information is particularly challenging in the case of medical imaging, because the whole image domain has to be considered a priori to avoid biasing image-based prediction and image interpretation. Feature selection is thus needed, but is often performed using mass-univariate procedures, that handle neither the spatial structure of the images, nor the multivariate nature of the signal. Here we propose a solution that computes a reduced set of high-level features which compress the image information while retaining its informative parts: first, we introduce a hierarchical clustering of the research domain that incorporates spatial connectivity constraints and reduces the complexity of the possible spatial configurations to a single tree of nested regions. Then we prune the tree in order to produce a parcellation (division of the image domain) such that parcel-based signal averages optimally predict the target information. We show the power of this approach with respect to reference techniques on simulated data and apply it to enhance the prediction of the subject's behaviour during functional Magnetic Resonance Imaging (fMRI) scanning sessions. Besides its superior performance, the method provides an interpretable weighting of the regions involved in the regression or classification task
Multi-scale Mining of fMRI data with Hierarchical Structured Sparsity
International audienceInverse inference, or "brain reading", is a recent paradigm for analyzing functional magnetic resonance imaging (fMRI) data, based on pattern recognition and statistical learning. By predicting some cognitive variables related to brain activation maps, this approach aims at decoding brain activity. Inverse inference takes into account the multivariate information between voxels and is currently the only way to assess how precisely some cognitive information is encoded by the activity of neural populations within the whole brain. However, it relies on a prediction function that is plagued by the curse of dimensionality, since there are far more features than samples, i.e., more voxels than fMRI volumes. To address this problem, different methods have been proposed, such as, among others, univariate feature selection, feature agglomeration and regularization techniques. In this paper, we consider a sparse hierarchical structured regularization. Specifically, the penalization we use is constructed from a tree that is obtained by spatially-constrained agglomerative clustering. This approach encodes the spatial structure of the data at different scales into the regularization, which makes the overall prediction procedure more robust to inter-subject variability. The regularization used induces the selection of spatially coherent predictive brain regions simultaneously at different scales. We test our algorithm on real data acquired to study the mental representation of objects, and we show that the proposed algorithm not only delineates meaningful brain regions but yields as well better prediction accuracy than reference methods
- …