55 research outputs found

    Real time realization concepts of large adaptive filters

    Get PDF

    Size-scaling limits of impulsive elastic energy release from a resilin-like elastomer

    Full text link
    Elastically-driven motion has been used as a strategy to achieve high speeds in small organisms and engineered micro-robotic devices. We examine the size-scaling relations determining the limit of elastic energy release from elastomer bands with mechanical properties similar to the biological protein resilin. The maximum center-of-mass velocity of the elastomer bands was found to be size-scale independent, while smaller bands demonstrated larger accelerations and shorter durations of elastic energy release. Scaling relationships determined from these measurements are consistent with the performance of small organisms which utilize elastic elements to power motion. Engineered devices found in the literature do not follow the same size-scaling relationships, which suggests an opportunity for improved design of engineered devices.Comment: 9 pages, 4 figure

    Numerical simulation of fiber orientation kinetics and rheology of fiber-filled polymers in uniaxial extension

    Get PDF
    During processing of fiber composites, the fiber-induced stresses influence the local flow fields, which, in turn, influence the stress distribution and the fiber orientation. Therefore, it is crucial to be able to predict the rheology of fiber-filled polymer composites. In this study, we investigate the fiber orientation kinetics and rheological properties of fiber composites in uniaxial extensional flow by comparing direct numerical finite element simulations to experimental results from our previous study [Egelmeers et al., “In-situ experimental investigation of fiber orientation kinetics during uniaxial extensional flow of polymer composites,” J. Rheol. 68, 171-185 (2023)]. In the simulations, fiber-fiber interactions only occur hydrodynamically and lubrication stresses are fully resolved by using adaptive meshing. We employed a 7-mode and a 5-mode viscoelastic Giesekus material model to describe the behavior of, respectively, a strain hardening low-density polyethylene (LDPE) matrix and a non-strain hardening linear LDPE matrix, and investigated the influence of the Weissenberg number, strain hardening, and fiber volume fraction on the fiber orientation kinetics. We found that none of these parameters influence the fiber orientation kinetics, which agrees with our experimental data. The transient uniaxial extensional viscosity of a fiber-filled polymer suspension is investigated by comparing finite element simulations to a constitutive model proposed by Hinch and Leal [“Time-dependent shear flows of a suspension of particles with weak Brownian rotations,” J. Fluid Mech. 57(4), 753-767 (1973)] and to experimental results obtained in our previous study [Egelmeers et al., “In-situ experimental investigation of fiber orientation kinetics during uniaxial extensional flow of polymer composites,” J. Rheol. 68, 171-185 (2023)]. The simulations describe the experimental data well. Moreover, high agreement is found for the transient viscosity as a function of fiber orientation between the model and the simulations. At high strains for high fiber volume fractions, however, the simulations show additional strain hardening, which we attribute to local changes in microstructure.</p

    Reduced-order modeling of modular, position-dependent systems with translating interfaces

    Get PDF
    Many complex mechatronic systems consist of multiple interconnected dynamical subsystems, which are designed, developed, analyzed, and manufactured by multiple independent teams. To support such a design approach, a modular model framework is needed to reduce computational complexity and, at the same time, enable multiple teams to develop and analyze the subsystems in parallel. In such a modular framework, the subsystem models are typically interconnected by means of a static interconnection structure. However, many complex dynamical systems exhibit position-dependent behavior (e.g., induced by translating interfaces) which cannot be captured by such static interconnection models. In this paper, a modular model framework is proposed, which allows to construct an interconnected system model, which captures the position-dependent behavior of systems with translating interfaces, such as linear guide rails, through a position-dependent interconnection structure. Additionally, this framework allows to apply model reduction on subsystem level, enabling a more effective reduction approach, tailored to the specific requirements of each subsystem. Furthermore, we show the effectiveness of this framework on an industrial wire bonder. Here, we show that including a position-dependent model of the interconnection structure (1) enables to accurately model the dynamics of a system over the operating range of the system and, (2) modular model reduction methods can be used to obtain a computationally efficient interconnected system model with guaranteed accuracy specifications.</p

    Size-scale affects the upper limit of elastic energy storage

    Get PDF
    Elastically-driven motion has been used as a strategy to achieve high speeds in small organisms and engineered micro-robotic devices. We examine the size-scaling relations determining the limit of elastic energy release from elastomer bands that efficiently cycle mechanical energy with minimal loss. The maximum center-of-mass velocity of the elastomer bands was found to be size-scale independent, while smaller bands demonstrated larger accelerations and shorter durations of elastic energy release. Scaling relationships determined from these measurements are consistent with the performance of small organisms and engineered devices which utilize elastic elements to power motion

    The Example of Joan of Arc. How a Belgian Teacher Created a Lesson Illustrated by Means of Lantern Slides

    No full text
    Due to a lack of sources documenting everyday teaching practices, historians engaging with the use of the optical lantern in education have traditionally focused on the top-down implementation of the medium. This contribution presents a rare case study of how the medium was actually used by focusing on a lesson on the saint Joan of Arc that was taught by means of the optical lantern at a Catholic school for girls. This analysis is enabled by the preservation of an exceptionally rich collection of lantern slides and related materials, including a notebook with the text that was probably used during the projection of the images. These sources show that the teacher who was in charge of the lesson went to great lengths to combine various images and text fragments with each other, creating a unique narrative that corresponded to her Catholic worldview and goals
    corecore