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Summary 

The real time application of large adaptive filters ( thousands of coeffi.cients) 
with a small processing delay (a few milli-seconds) and good convergence 
behaviour, as needed in, for example, the acoustic echo canceller, is not 
possible with the currently available adaptive filtering algorithms. Realiza­
tion in time domain by transversal filter structures yields a computational 
complexity that makes real time implementation on, for example, a Digital 
Signal Processor (DSP), fora lot of applications impossible. Besides that, 
often convergence behaviour, when coloured input signals like speech are 
used, is not good enough for practical applications. 

By using block processing and Fourier transforms, transversal filters 
( convolutions) can be performed effi.ciently in frequency domain. Applying 
these techniques in adaptive filtering leads to the Block Frequency Domain 
Adaptive Filter (BFDAF). The convergence behaviour of this algorithm 
for strongly correlated (coloured) input signals is improved by frequency 
domain normalization of the adaptation procedure for the coeffi.cients. 

A side effect of these block processing techniques is a processing delay 
equal to the block length. When processing delay, and thus block length, are 
bound toa certain (small) maximum, computational complexity becomes 
quite large. Partitioning of the convolution in smaller parts yields a much 
smaller computational complexity in Partitioned BFDAF (PBFDAF). This 
partitioning however implies that the length of the coefficient update part is 
also reduced, which means that the length of the normalization vector gets 
smaller. This can lead to bad convergence behaviour for highly correlated 
input signals. 

By using different partition factors, block lengtbs and Fourier transform 
lengtbs in the update and the convolution part of the adaptive filter, a 
Decoupled PBFDAF (DPBFDAF) algorithm is obtained. When a certain 
maximum processing delay is allowed, this Decoupled algorithm has a much 
smaller computational complexity, and a larger normalization resolution in 
frequency domain, than the algorithm using only one partition factor. The 
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2 SUMMARY 

larger resolution of normalization can improve the convergence behaviour 
of the adaptive filter considerably for highly correlated input signals. 

In applications where large adaptive filters with a small processing de­
lay are needed, computational complexity of the Decoupled algorithm can 
he reduced even further by using a non-uniform partitioning of the filter 
in the convolution part. The resulting Non-Uniform Partitioned BFDAF 
(NUPBFDAF) algorithm has practically the same convergence properties 
as the DPBFDAF algorithm with a much smaller computational complex­
ity. 

By simulations and by implementation of an acoustic echo canceller on a 
single DSP, the adaptive filtering algorithms are compared. The results for 
acoustic echo cancellatiort, where a non stationairy and highly correlated 
input signal (speech) and a time variabie echo-path are strong handicaps 
for the adaptive filtering algorithms, made it necessary to adjust the al­
gorithtns. Particularly normalization and stepsize control needed further 
improvements. 

The DPBFDAF, and even more, the NUPBFDAF make it possible to 
use adaptive filters in real-time applications where both a large filter length 
and a small processing delay are required. 



Samenvatting 

De "real time" toepassing van grote adaptieve filters (enkele duizenden 
coëfficiënten) met een kleine berekeningavertraging (enkele milli-seconden) 
en goede convergentie eigenschappen, zoals bijvoorbeeld nodig is bij de 
akoestische echo compensator, leidt bij gebruik van de reeds langer bestaan­
de algoritmen tot niet bruikbare oplossingen. De directe realisering in het 
tijddomein door middel van transversale filterstructuren levert een bereke­
ningacomplexiteit op die voor veel toepassingen "real time" implementatie 
op bijvoorbeeld een Digitale Signaal Processor uitsluit. Bovendien zijn de 
convergentie eigenschappen bij gekleurde ingangssignalen, zoal bijvoorbeeld 
spraak, vaak onvoldoende voor praktische toepassingen. 

Door gebruik te maken van blok berekeningamethoden en Fourier trans­
formaties kunnen transversale filters ( convoluties) efficiënt in het frequentie 
domein berekend worden. Toepassing in adaptieve filters levert het "Block 
Frequency Domain Adaptive Filter" op. De convergentie eigenschappen van 
dit algoritme voor sterk gecorreleerde (gekleurde) ingangssignalen kunnen 
worden verbeterd door de adaptatie van de coëffiënten in het frequentie 
domein te normaliseren. 

Door gebruik te maken van deze blok berekeningamethoden ontstaat 
echter een berekeningavertraging die overeenkomt met deze blok lengte. 
Indien de berekeningsvertraging, en dus de blok lengte, gebonden is aan 
een bepaald maximum kan de berekeningscomplexiteit toch nog vrij hoog 
oplopen. Het opdelen (partitioneren) van de convolutie in kleinere delen 
levert een veellagere berekeningacomplexiteit op. Aangezien ook het "adap­
tatie" gedeelte wordt opgedeeld wordt de lengte van de normalisatie vector 
sterk gereduceerd wat kan leiden tot een verslechtering van de convergentie 
eigenschappen voor sterk gekleurde ingangssignalen. 

Door gebruik te maken van verschillende partitie factoren, blok leng­
tes en Fourier transformatie lengtes in het "adaptatie" en het "convolutie" 
gedeelte van het adaptieve filter wordt een "Decoupled" algoritme verkre­
gen. Bij een gelijke vertraging als bij het met één factor partitioneren, 
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4 SAMENVATTING 

heeft dit "Decoupled" algoritme een veellagere berekeningscomplexiteit en 
een veel grotere normalisatie resolutie in het frequentie domein. Door deze 
laatste eigenschap kunnen de convergentie eigenschappen van het adaptieve 
filter voor sterk gekleurde ingangssignalen verbeteren. 

Voor toepassingen van grote adaptieve filters met kleine toegestane 
maximale vertraging en grote filter lengte kan de berekeningscomplexi­
teit nog verder worden gereduceerd door gebruik te maken van een niet­
uniforme partitie van het "convolutie" gedeelte. Het resulterende algoritme 
heeft vrijwel gelijke convergentie eigenschappen als het "Decoupled" algo­
ritme bij een veellagere berekeningscomplexiteit. 

Door middel van simulaties en de implementatie van een akoestische 
echo compensator op één Signaal Processor zijn de eerder genoemde algo­
ritmen getest. De resultaten bij de akoestische echo compensator, waar een 
niet stationair en sterk gecorreleerd ingangssignaal (spraak) en een tijd­
variant echo-pad het adaptatie proces sterk bemoeilijken, maakten verdere 
aanpassingen aan de algoritmen noodzakelijk. Met name bij het regelen 
van de adaptatie-constante en de normalisatie blijken nog verbeteringen 
mogelijk. 

Het "Decoupled" algoritme en, nog sterker, het niet-uniform geparti­
tioneerde algoritme maken het mogelijk om adaptieve filters te gebruiken 
in "real time" toepassingen waar zowel een grote filter lengte als een kleine 
berekeningsvertraging worden gevraagd. 
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Chapter 1 

Introduetion 

After the introduetion of the term Adaptive Filter some applications of these 
adaptive filters in the area of signa/ estimation, signa[ correction and signal 
prediction are mentioned. Some basic adaptive filter theory is needed for 
further development in the remaining chapters, where real-time realization 
concepts of large adaptive filters will be discussed. 

1.1 Linear Adaptive Filters 

The object filter is used to describe a. device performing the basic informa­
tion processing opera.tion: using noisy data. to extract informa.tion a.bout a 
qua.ntity of interest. A filter is called linea.r when its output is a linea.r func­
tion of its inputs. By using certain parameters, such a.s correla.tion, varianee 
and mea.n of the input data., we ca.n minimize the mea.n square va.lue of the 
error signal, defined a.s the average squa.red difference between some de­
sired filter output a.nd the a.ctual filter output. When both the input signal 
a.nd the qua.ntity of interest are sta.tionary the Wiener filter a.chieves this 
goal [58]. In the first insta.nce, the Wiener filter theory was developed for 
continuons-time systems, later on it was a.pplied to discrete-time systems. 
In this thesis, we will only consider discrete-time filters. 

The use of Wiener filters a.ssumes the a.va.ila.bilty of informa.tion about 
the correla.tions in the data. to he processed. Wh en not all of the informa.tion 
tha.t is needed is known completely, the resulting filter (if it is still possible 
to design) ma.y he non optimal. A solution to this problem is the use of 
a.da.ptive filters. 

An adaptive filter uses a. recursive algorithm, which makes it possible for 
the filter to perform in an environment where knowledge of correla.tions in 
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12 CHAPTER 1. INTRODUCTION 

the input signals is not available, or these correlations are varying slowly. In 
average the algorithm converges to the Wiener salution in some statistica! 
sense. In the next section some applications of adaptive filters are discussed. 

1.2 Applications of Adaptive Filters 

1.2.1 Signal Estimation 

System Identification for Signal Estimation 

In the general signal estimation problem a known signal x[k] is applied to 
an unknown system, possibly corrupted with noise, as depicted in figure 1.1. 
Our goal is to develop a model for this system in the form of a transversal 

x[k] 

r[k] 
e[k] 

Unknown 
system 

+ 

Figure 1.1: General signal estimator. 

noise 

filter, consisting of a tapped delay-line and a corresponding set of adjustable 
coeffieients w[k], with the length N vector w[k] defined as 

wN[k] = ( WN-l[k] · · · wo[k] )t, (1.1) 

like in figure 1.2. The update algorithm of figure 1.1 has to adjust the 
coefficients of w[k] in such a way that the estimation error r[k], defined 
as the difference between the measurable (corrupted) output e[k] of the 
unknown system and the filter output ê[k], is minimized insome statistica! 
sense. 

Acoustic Echo Cancellation 

An application of signal estimation can be found in echo cancellation. In 
figure 1.3 a general teleconferencing scheme is given [28]. We see that two 
acoustic echos are generated (ei[ k] and e2 [ k]) caused by the fact that the 
microphones and loudspeakers are coupled by an acoustic path. By using 
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x[k- N + l] x[k- N + 2] x[k- 1] 

...------i ~ f--...,.--

N-t[k] 

Figure 1.2: Transvers al filter. 

room 1 room 2 

Figure 1.3: Teleconferencing scheme. 

ê[k] 
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14 CHAPTER 1. INTRODUCTION 

two Acoustic Echo Canceliers ( AECs) these echos can be compensated. 
One of the AECs is isolated in figure 1.4. The goal of the AEC is to make 

x[k] 

ë[k] 
r[k] 

Figure 1.4: Acoustic echo canceller. 

an estimate r[k] of s[k]. This is achieved by making an estimate ê[k] of e[k] 
and subtract it from ë[k]. The main problems here are, besides the physical 
length of the acoustic echo path, the non-stationarities in the input signal 
x[k] and the time variant character of the echo path. When double talk is 
detected, meaning that both s[k] and x[k] contain speech, updating of the 
echo cancelier coeffi.cients is inhibited. 

Data Echo Cancellation 

Another type of echo canceller is the Data Echo Cancelier. Wh en only 
two wires are available for bi-directional communication (for example in 
telephony [47]),. we can conneet a four- to a two-wire transmission using 
hybrids as shown in figure 1.3. Because the hybrids are not perfect, two 

site 1 site 2 

x1[k] x2[k] 

e
1
[k]) (.,[kJ 

r1[k] r2[k] 

Figure 1.5: Two wire communication . . 
echos are generated (e1[k] and e2[k]). By using two Data Echo Canceliers 
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these echos can be compensated. One of those Data Echo Canceliers is 
depicted in figure 1.6. The adaptive filter has to produce an estimate ê[k] 

x[k] 

r[k] 

Figure 1.6: Data echo canceller. 

of the echo e[k] generated by the hybrid. 

N oise Cancellation 

A third application of the signal estimator is the adaptive noise canceller 
[39]. In :figure 1.7, an unknown system with impulse response ,à[k] colours 
the measurable noise x[k]. This results in the colonred noise signal e[k], 
that corrupts a desired signal s[k]. An example is that of a car driver 
using a telephone, where x[k] is produced by the car engine (picked up by 
a microphone near the engine) and s[k] is the speech of the car driver. The 
(hands-free) telephone microphone picks up both the speech of the driver 
and the distorted engine noise, resulting in ë[k]. The taskof our adaptive 

x[k] 

r[k] 

Figure 1.7: Noise canceller. 

filter is to produce an estimate ê[k] of the signal e[k], which subsequently 
can he subtracted from the measurable signal ë[k], resulting in an estimate 
r[k] of s[k]. 
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Adaptive Beamforming 

An adaptive beamformer (27] processes signals from a number of indepen­
dent sensors (e.g. microphones or antennas) by an array of adaptive filters 
whose outputs are summed together (see figure 1.8). We try to adjust the 
adaptive filters in such a way that they generate a maximum output for 
a desired signal from a possibly unknown direction, and place nulls in the 
direction of the interference sources. 

Array of 

sensors 

Steering vector 

Figure 1.8: Adaptive beamformer. 

1.2.2 Signal Correction 

Equalization 

Output 

+ 

An example where signal correction is needed is the adaptive equalizer. A 
signal e(k] is to be received through a channel with unknown impulse re­
sponse l![k], corrupted by an additive noise signal n[k]. The resulting signal 
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x[k] has to be corrected by an adaptive filter in such a way that the channel 
distortion is removed and the desired signal e(k] can be estimated. In the 

e[k] 

Test signal 
generator 

Figure 1.9: Adaptive equalizer. 

Decision Directed Equalizer [27] from figure 1.9, the signal e[k] is assumed 
to be discrete in amplitude ( often binary, allowing only two different val u es 
for e[k]). The adaptive filter generates an estimate ê[k] of e[k], which is 
corrected by a decision element to the nearest discrete value allowed for 
e[k]. The adaptive filter error is estimated by taking the difference between 
the corrected estimate ë[k] of e[k], that is the output from the decision 
element, and the output ê[k] of the adaptive filter. In order for this system 
to work properly, the adaptive filter must he close to its optimal solution, 
which requires the use of an initial training sequence (generated by the test 
signal generator) .1 

1.2.3 Signal Prediction 

Signal Prediction in General 

A signal x[k] consists of a predictabie part e[k], that can he determined 
from information of the past signal values, and an unpredictable part. An 
adaptive filter is used to produce an estimate ê[k] of that predictabie part. 
The residual signal r[k] = x[k]-ê[k] then is an estimate of the unpredictable 
part of x[k]. 

10n both sides of the communication channel, a test signal generator produces the 
same sequence of samples. In figure 1.9 only the test signal generator on the receiver side 
is depicted. 
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Adaptive Line Enhancer 

An example of a signal predietor is the Adaptive Line Enhancer (ALE) 
[56, 40], given in figure 1.10. AnALE can he used to detect a narrow-band 

x[k] 
x[k- Ll') 

1----.---~ ê[k] 

r[k] 

Figure 1.10: Adaptive line enhancer. 

signal e[k] {that is highly correlated), for example a sine-wave, embedded 
in wide-ba.nd noise n[k] (x[k] = n[k] + e[k]). Assuming tha.t there is no 
correlation between n[k] and n[k - Ll'], the ada.ptive filter produces an 
estimate ê[k] of e[k]. 

Autoregressive Spectrum Analysis 

Signal pred.ietion can also he used in autoregressive spectrum analysis [27]. 
In figure 1.11 we see a signal x[k], ofwhich we assume that it is the output of 
a linear :filter that is excited by a white-noise process. Further we assume 
that the :filter has a transfer function that consists of poles only {Auto­
Regressive (AR) model). The inverse transfer function thus is all-zero, and 
a transveraal adaptive :filter of suflident order can he used. The adaptive 
:filter is adjusted in such a way that e[k] becomes a white noise signal. 

x[k] 

Figure 1.11: Autoregressive spectrum analysis. 
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1.3 Assumptions and Definitions 

1.3.1 General Definitions 

Befare introducing general adaptive filter theory some assumptions and 
definitions have to be made. All in- and output signals are real and discrete 
in time, x[k] denoting the signal x at time instanee k, which equals the 
continuons time instanee kT. T is the intersample distance (sample time), 
where 1/T = Is symbolizes the sample frequency. The delay operation is 
named ~' delaying over one sample interval. 

Signals (like x[k]) are described by lower case characters, while up­
per case characters represent constauts (e.g. A). U nderlining is used for 
vectors, lower case for time domain (.g;_[k]), and upper case for frequency 
domain (X[k]). Matrices are denoted by bold face calligraphic or upper 
case characters (like X[k] or I). 

Dimensions of veetors and matrices, when necessary, are put in super­
script like ~N[k] fora length N vector, or xB,Q[k] fora B x Q matrix. For 
a square matrix the second dimension may be omitted. Subscripts are used 
for further distinction, for example, Wi denotes the i'th coefficient of w. 

An operation on a single scalar, vector or matrix is denoted by putting 
the scalar, vector or matrix between brackets and appending the operation: 

• (~N[k])t, (XN,B[k])t: transpose. 

• (x[k])*, (_g;_N[k])*, (XN,B[k])*: elementwise complex conjugate. 

• (gzN[k])h, (XN,B[k])h: hermitian transpose (complex conjugate of 
transpose) . 

• c~N[k])a, (XN,B[k])a,b: a'th, (a, b )'th element (starting with the O'th 
element). 

• (x[k])a: x[k) to the power a. 

Another group of operations is denoted be putting the operand between 
curly brackets and putting the operator in front: 

• t'{x[k]}: the mathematica! expectation.2 

• diag{XN}: a vector containing the diagonal of the N x N matrix 
xN. 

2t{x[k]} is the average of a.n ensemble of signals x[k], which equals the average over 
time in the sta.tionary case. 
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• diag{~N}: the N x N matrix containing zeroes outside its main di­
agonal, with diag{ diag{~N}} = ~N. 

• max{N,B}, min{N,B}: the maximum and minimum of N and B. 

• ~{X},~{X}: realand imaginary part of X, thus X= ~{X}+ J • 
9{X}, where J denotes the imaginary unit. 

• fN/Ql: largest integer not larger than NJQ. 

• LN/QJ: smallest integernotsmaller than NjQ. 

• gcd{N,Q}: greatest common divisor of N and Q. 

For real valued signals x[k], with C{x[k]} = 0, the varianee of x[k] is 
denoted by u;, with 

u~= C{(x[k]?}, (1.2) 

while the autocorrelation coeffi.cients Pi are defined by 

Pi = C{x[k] · x[k- i]}. (1.3) 

The N x N (auto-)correlation matrix of such a signal x[k] is defined by 

(1.4) 

As we will be using non-stationary signals later on in this thesis, we will 
append a time index to the averages as soon as this is necessary. For the 
moment we assume that all signals involved are stationary. 

In the glossary (page 189) an extended description about notation, ab­
breviations and the symbols used in the figures is given. 

1.3.2 Assumptions for the Adaptive Filters 

In figure 1.12 a general adaptive filter is depicted. We assume that: 

• Both x[k] and s[k] have zero mean, so C{x[k]} = 0 and C{s[k]} = 0. 

• There is no correlation between x[k] and s[k] (within the length of 
the adaptive filter), implying that C{~N[k]s[k]} = _qN. 

• The unknown system .á[k] can be modelled by a FIR filter oflength 
N.3 

3 When this is not the case, we assume that the "rest" of l![k] (that cannot be modelled) 
is part of the desired signal s[k]. 
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• The filter vector wN[k] is statistically independent of the input signal 
x[k].4 

• All input signals are stationary, and the unknown system is time 
invariant (in the fust instanee ). Later we will use the developed 
adaptive :filters under non-stationary conditions. 

1.4 Adaptive Filter Theory 

1.4.1 Introduetion 

For the purpose of further development we use the general signal estimation 
scheme of figure 1.1, of which a modified form is given in figure 1.12. 

x[k] 

e[k] 
r[k] 

Figure 1.12: General adaptive filter. 

In the previous section the assumption was made that the unknown 
system function, that can be represented by the vector h.[k], can be mod­
elled exactly with a Finite lmpulse Response (FIR) :filter. The taskof the 
adaptive filter is to produce an estimate ê[k] of the unknown signal e[k], 
resulting from passing the signal x[k] through the system h.[k]. For the mo­
ment, we assume that the unknown system is fixed (with impulse response 
h.). 

The above implies that two processes take place in an adaptive filter: 

1. The "update" process, which involves the adjustment of the tap 
weights of the filter according to some algorithm. 

2. The ":filter" process, which involves multiplying the tap inputs by the 
corresponding tap weights and generating an estimate of the desired 

4This is not the case in practice, but by choosing the adaptation constant sufficiently 
small, this is an acceptable assumption. 
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response. Besides that an estimation error is generated by comparing 
the estimate ê[k] to the corrupted response ë[k]. This estimation 
error is coupled back ("coupling") totheupdate part to actuate the 
adaptive process. 

Before proceeding with adaptive filtering, a short introduetion to Wiener 
( :fixed) filter theory is given. 

1.4.2 Wiener Filter Theory 

Optimum Filtering 

Consider the linear transversal (:fixed) filter of figure 1.13. We assume real 

x[k- N + 1] x[k- N + 2] x[k 1] 

f----r------1 À IE---r--- x[k] 

x WN-1 wo 

r[k] 

ë[k] 

Figure 1.13: Transveraal filter. 

valued stationary inputs, with zero mean. The filter output can then be 
written by the convolution sum 

N-1 
ê[k] = L Wi • x[k- i] 

i==O 

(wN)t~N[k] (1.5) 

where the filter vector wN is given by 

(1.6) 
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and the input signal vector ~N[k] by 

(1.7) 

The goal is to estimate the filter coefficients w0 till WN-I in such a way 
that the difference r[k] between the desired response ë[k] and the actual 
filter response ê[k] is minimized in some statistkal sense, with 

r[k] = e[k]- ê[k] 
= e[k]- ( wN)t~N[k]. (1.8) 

In Wiener filter theory the minimum Mean Square Error (MSE) criterion 
is used for optimization, with the MSE defined as 

Tw = t'{(r[k]?}. (1.9) 

Minimizing T w with respect to w yields the optimum linear filter in the 
minimum mean square sense. 

Mean Square Error (MSE) 

The MSE can be expressed with equations (1.8) and (1.9) as follows 

Tw :::: &{(ë[k])2}- (wN)t&{~N[k]ë[k]}- &{ë[k](~N[k])t}wN 
+(wN)tt'{!f.N[k](-'fN[k])t}wN. (1.10) 

We assume that ë[k] has zero mean and that !f.N[k] and ë[k] are jointly 
stationary and denote the varianee of ë[k] as 

(1.11) 

With equations (1.4), (1.11) and defining the crosscorrelation between !f.N[k] 
and ë[k] by 

we can write equation (1.10) as 

T - 2 w - ue 

{1.12) 

(1.13) 

Tw, as in the above equation (1.13), is precisely a quadratic function ofthe 
adaptive weight vector wN. As 'Kif is positive definitive, the dependenee 
of the mean square error T w on the unknown weights may be visualized in 
the form of a multidimensional paraboloid with a uniquely de:fined bottorn 



24 CHAPTER 1. INTRODUCTION 

or minimum point 'I min· The weights corresponding to this minimum point 
define the optimum Wiener solution vector ~t· In this point the gradient 
'VN of T w, defined as 

N 8Tw 
\1 = êwN (1.14) 

equals a vector containing all zeroes. This is depicted for a single adaptive 
weight in figure 1.14. 

i 

Figure 1.14: The MSE as function of a single adaptive weight Wi· 

Optimum Tap Weight Vector 

To determine the optimum tap weight vector ~t we have to calculate the 
gradient vector 'VN· From equation (1.14) and (1.13) it follows that 

\lN = - 2pN- + 2'R.!j WN. 
- -x,e 

(1.15) 

For the optimum tap weigth vector, where 'VN equals the null vector, this 
implies -

N _ ('"N)-1 N 
:!!lopt - "-x P -· ::...x,e (1.16) 

From equations (1.13) and (1.16) it follows that the minimum MSE, reached 
for wN = ~t' equals 

'V' 2 ( N )t N 
J. min = O'e - P - :!!lopt • "-'l:,e 

(1.17) 
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1.4.3 Application of Wiener to Adaptive Filters 

Structure and Introduetion 

25 

Now we will apply the Wiener filter theory to adaptive filtering. As stated 
before, the structure of the adaptive filter consists of two basic parts: a 
transveraal filter with adjustable tap weights w0 (k] till WN-t[k] and a mech­
anism for updating these weights. The update part has to solve the "normal 
equation" of the adaptive filter (equation (1.16)). To avoid the computa­
tional difficulties of doing this explicitly we can use iteration by the method 
of steepest descent [33]. 

Steepest Descent 

Succesive corrections to the tap weight vector in the direction of the neg­
ative of the gradient vector (in the direction of the steepest descent of 
the error performance surface) should intuitively lead to the optimum tap 
weigth vector [57, 26]. This can be achieved by using a steepest descent 
update, from which the update rule looks like 

(1.18) 

where a is the step size (or adaptation) parameter (a> 0). 
1f it were possible to make exact measurements of the gradient vector at 

each iteration and if the step size parameter a is suitably chosen, then the 
tap weight vector would indeed converge to the optimum Wiener solution 
using this steepest descent method [57, 26]. In practice however, these exact 
measurements of the gradient vector are not possible, so an estimate of the 
gradient vector has to be used. A well known and simple algorithm that 
uses such an estimate is the Least Mean Square (LMS) algorithm [54, 55]. 
This LMS algorithm will be the starting point for the sequel of this thesis. 

1.5 Properties of Adaptive Filters 

From now on the focus will be on efficient implementations of adaptive 
algorithms when the filter length N is very large (say N > 500). We 
will keep in mind that we want to realize such an adaptive filter on a 
Digital Signal Processing system, and if possible, with the use of only a 
single Digital Signal Processor (DSP). To do so we have to look at some 
properties of the diverse algorithms mentioned in this thesis, in order to 
make a good comparison between them. 
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• Processing delay: 

- Algorithm processing delay (~): delay caused by the structure 
of the algorithm ( thus only depending on the sample ra te and 
the algorithm, and not on the specific hardware used). 

- Computation processing delay (D): delay caused by the delay 
of the hardware that is used. 

• Computational comple:xity: number of 

- Multiplications. 

- Additions and Subtractions. 

- Loads and Stores. 

- Other (Divisions, Square roots, ... ). 

DSPs, in gerteral, have single cycle multiplications, and most of them 
are capable of performing additions, loads and stores in parallel to 
those multiplications. In this thesis we will use as a measure for com­
ple:xity the number of real fl.oating point multiplications per sample 
(ti). The operations that arenotsingle cycle in general, like divisions, 
square roots, ... , will be performed by algorithms using only single 
cycle instructions ( see chapter 6). Although this number of real fl.oat­
ing point multiplications per sample is not an exact measure for the 
number of instructions ( or cycles) needed for a DSP implementation, 
it does give a good indication for the case of adaptive filtering, as 
the number of "other" operations is proportional to the number of 
multiplications in the algorithms used in this thesis. 

• Memory occupation ( 0 ): least number of memory locations that a 
DSP implementation of an adaptive filtering algorithm needs for its 
data. 

• Convergence and Tracking: we distinguish hetween 

1. Performance under time-invariant conditions (time-invariant un­
known system impulse response and stationary input signals ), 
where the final mis'!-djustment T and convergence speed are pa­
rameters of interest. Note that in this thesis only qualitative 
comparisons between diverse algorithms are made. The noise in 
the adaptive coefficients ( caused hy a too large step-size param­
eter a), causes a misadjustment T 1 • 
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2. Performance when the unknown system impulse response is time­
variant (like an acoustic echo) ( "tracking" properties ). Here a 
too small step-size parameter a can make the adaptation process 
too slow to follow the unknown system impulse response, imply­
ing a misadjustment T 2 , while a too large block size (for block 
processing algorithms) implies an extra misadjustment T 3 • 

3. Performance when the input signals are non-stationary. (like 
speech). 

• Numerical behaviour: inaccuracies are produced caused by the finite 
precision when operating on DSPs. We distinguish between numerical 
stability and numerical accuracy. The former is an inherent charac­
teristic of an adaptive filtering algorithm, while the latter is deter­
mined by the number of bits used in the representation of data in the 
adaptive filter. 

In appendix A properties (particularly computional complexity and com­
putation delay) of some important elements (Fast Fourier Transform, Ele­
mentwise multiplications, Power estimation) are explained in detail. 

Every algorithm wiJl he illustrated by an example. For this example we 
keèp the acoustic echo canceller in mind, assuming that we have a sample 
frequency of 8 kHz ( telephony standard) and a filier of 4000 coefficients 
( cancelling an echo of 500 milli-seconds )5 that has to he implemented on 
one Texas lnstruments TMS320C30 signal processor. We will try to findan 
algorithm with a total processing delay Dma.x smaller than 0.5 milli-second.6 

1.6 Further Outline 

This thesis is organized as follows: After the introduetion of the Least 
Mean Square (LMS) algorithm a short derivation of the well known Block 
Normalized Least Mean Square (BNLMS) algorithm is given. From litera­
ture [57] it is known that convergence properties of this algorithm depend 
on the correlation intheinput signal. The Recursive Least Squares (RLS) 
metbod uses past information of the input signal x[k] to remave this depen­
dency. To decrease complexity the amount of past information needed can 
he reduced, which is shown by using a geometrical approach. The results 

5 Most room impulse responsescan he modelled a.ccurately by an impulse response of 
this length. 

6The development of world-wide standards for delays in telecommunication equipment 
tend towards a maximum allowa.ble delay of 1 milli-second for the whole system. 
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are the Block Orthogonal Projection (BOP) algorithm, and a generaliza­
tion of the BOP algorithm, the Decoupled BOP (DBOP) algorithm. In 
these (D)BOP and RLS algorithms the influence of the correlation in the 
input signal on the convergence properties of the adaptive filter is reduced 
by using an estimate of the inverse autocorrelation matrix. The result of 
this decorrelation is that, in general, convergence properties of the adaptive 
:filter become better. 

The two main operations of the adaptive algorithms in this thesis are: 

1. Calculation of the output signal ê[k] of the adaptive :filter. This is 
done by convolving the adaptive weight vector wN[k] with the input 
signal vector ,;rN [ k]. 

2. Calculation of an estimate of the gradient vector \lN[k]. For this 
the crosscorrelation between the signal vector ,;rN[k]~d the residual 
signal r[k] has to be calculated. 

From literature [34] it is known that, for large :filters, the convolution and 
correlation operations can be calculated efliciently by implementation on 
block basis and evaluation in frequency domain. However, the main disad­
vantage of this technique is the resulting processing delay. 

In chapter 3 a mathematica! description is given for an eflicient imple­
mentation of both a convolution and a correlation operation in frequency 
domain by using block processing techniques. From this an efliciently imple­
mented BNLMS algorithm follows in a straightforward way. To implement 
the BOP and RLS algorithms in an eflicient way, the same approach is 
followed. The extra step here, in comparison with BNLMS, is that an ap­
proximation has to be made in order to implement the decorrelation by the 
inverse autocorrelation matrix efliciently in frequency domain using (fast) 
Fourier transforms. The result of this approach is the Block Frequency 
Domain Adaptive Filter (BFDAF) [8]. In this approach the influence of 
the input signal correlation is reduced by normalization of each separate 
Fourier transform output by its variance. 

The drawback of using the BFDAF is that is not possible to satisfy 
both the following contradictive requirements: 

1. The block length has to be as small as possible for a small processing 
delay. 

2. The block length has to he as large as possible to obtain an eflicient 
implementation. 
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These contradictive requirements can be circumvented by applying par­
tition techniques to the filter and the update part. The results are the 
Partitioned BFDAF (PBFDAF) and the Decoupled Partitioned BFDAF 
(DPBFDAF). The former uses one partition factor to partition both filter 
and update part, while the latter uses two different partition factors. With 
the DPBFDAF approach we are able to choose an implementation that 
realizes simultaneously a given minimal allowable processing delay and a 
small computational complexity. 

Complexity however can still be too large for practical situations, such 
as large Acoustic Echo Canceliers (AECs) at high frequency (8-16 kHz.). 
Fiuther rednetion in complexity can he achieved by using a non-uniform 
partition technique in the filter part of the adaptive filter. This leads to the 
Non-Uniform Partitioned BFDAF (NUPBFDAF). With this new approach 
complexity can be reduced even further than in the DPBFDAF case. 

In chapter 6 methods for normalization in DPBFDAF and NUPBFDAF 
are introduced. A decoupling of the update part dimensions and the nor­
malization vector length impraves the flexibility of the algorithms. 

The properties of the given algorithms are compared to each other, 
tagether with the results of simulations in chapter 7. The DPBFDAF 
algorithm has been realized in a practical Acoustic Echo Cancelier on a 
single Digital Signal Processor (DSP) as described in chapter 8. Finally 
some conclusions are given in chapter 9. 
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Chapter 2 

Time Domain Adaptive 
Filtering 

The best known algorithm for adaptive filtering in time domain is the Least 
Mean Square (LMS) algorithm. Due to its simple structure and low com­
putational complexity compared to other time domain algorithms, it has 
become very popular. lts convergence behaviour however, depends strongly 
on the input signal varianee and (auto-)correlation. 

By normalization of the update equatton of LMS we obtain the Normal­
ized LMS {NLMS} algorithm. The NLMS convergence behaviour no longer 
depends on the input signal variance. Both the LMS and NLMS algorithm 
make one update every sample interval. The Block {N}LMS (B(N)LMS) 
algorithm performs only one update every B sample intervals. The conver­
genee properties of this generalization of the (N)LMS algorithm still depend 
on the input signa! (auto-)correlation. Since many physical processes of in­
terest, such as speech and special codes, are highly correlated, we would like 
to have adaptive algorithms that are less dependent on these characteristics 
of the input signal. 

In time domain the Recursive Least Squares (RLS) algorithm decorre­
lales the input signa[ with the inverse of the N x N autocorrelation matrix 
of the input signal. The RLS algorithm minimizes the dependency of the 
convergence behaviour on the input signal correlation, but even Jast imple­
mentations imply a huge computational complexity. 

The (Block) Orthogonal Projection ((B)OP) algorithm decorrelales the 
input signal with its B x B autocorrelation matrix, where 1 ~ B :::; N. This 
method, that is a generalization of both BNLMS (for B = 1} and (a block 
version of) RLS (for B = N }, decreases the dependency of the convergence 

31 
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behaviour on the input signal correlation, but also increases computational 
complezity, compared to BNLMS. The coupZing of the bloclc length B to the 
autocorrelation matrix dimension in BOP can be removed. The resulting 
Decoupled BOP (DBOP) is a generalization of the BOP algorithm. 

2.1 Least Mean Square (LMS) 

2.1.1 LMS Algorithm 

From chapter 1 we know that the application of Wiener filter theory to 
adaptive filtering requires the use of an estimate VN [k] of the gradient 
vector VN[k] (in equation {1.15)), where -

(2.1) 

with 
(2.2) 

To obtain such an estimate, the Least Mean Square (LMS) algorithm uses 

instantaneous estimates 'k.:[k] and _pN_[k] ofthe (auto-)correlation matrix 
~,e 

"R.:-[k] and cross-correlation vector ~-[kJ as given by 
~,e 

where 
~N[k] = ( z[k- N + 1] .. · z[k] }t. 

This implies for the instantaneous estimate of the gradient vector 

VN [k] = -2~N[k](é[k]- (~N[k])twN[k]) 

(2.3) 

(2.4) 

(2.5) 

= -2~N[k]r[k]. (2.6) 

Using equation (2.6), equation (1.18) and figure 1.12, we get the next pair 
of relations for the LMS algorithm [54, 55, 57] 

r[k] = é[k]- (wN[k])t~N[k] 

wN[k + 1] = wN[k] + 2a~N[k]r[k]. 
(2.7) 

(2.8) 

The above equations are depicted in figures 2.1 and 2.2. A one sample delay 
( delaying over T seconds, with 1 /T = fs) is depicted by box es labelled ".6.". 
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x[k] 

x[k- 1] 
---.---...;A ~------1 

y[k] = 2a · r[k] 

2a r[k] 

Figure 2.1: Least Mean Square (LMS) algorithm. 

x[k- i] 

I Up~te; I ) w;[k] 

y[k] 

x[k- i] 

y[k] 

Figure 2.2: Update block of LMS. 
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2.1.2 Properties of LMS 

The following features of the Least Mean Square algorithm can be derived: 

• The algorithm itself has no inherent delay (for all time indices k, r[k] 
depends only on input signals with a time index that equals at most 
k ). This means for the algorithm processing delay dLMS that 

dLMS = 0. (2.9) 

• Computation processing delay (for only one multiplication, see ap­
pendix A) 

DLMS < 1. (2.10) 

• Computational complexity 

q;LMS = 2. N. (2.11) 

• Memory occupation: 

- Input delayline (length N) 

- Weight vector wN (length N) 

(:)LMS = 2·N. (2.12) 

2.1.8 Convergence and Tracking 

From literature [54, 55, 57, 46] it is known that the convergence behaviour 
of the LMS algorithm depends strongly on the input signal varianee and 
autocorrelation. The final misadjustment and the speed of convergence can 
degrade rather heavily when highly correlated ("coloured") input signals are 
used (such as speech). If we look at the LMS update equation and define 
the difference channel !!N[k] as the difference between the actual impulse 
reponse l!N[kJ to estimate, and the estimated impulse response wN[kJ, (thus 
gN[k] = l!N[k]- wN[k]) we get from equation (2.8) and the assumptions in 
section 1.3 that 

E{dN[k + 1]} E{(IN- 2a~N[kJ(~N[k])t) gN[k]- 2a~N[k]s[k]} 

~ (IN- 2a'R.:[k])E{gN[k]} (2.13) 

The presence of the input signal autocorrelation matrix 'R.:[k] in the above 
equation is the main cause of degradation in convergence properties. The 
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distribution of the eigenvalnes of that matrix defines the speed of conver­
genee and the final misadjustment [54, 55, 57, 46]. 

When the unknown impulse response h.N[k] is time varying (meaning 
that its is non-stationary), the tracking of the LMS algorithm becomes 
important. Increasing a bas to contradictive effects. It decreases the mis­
adjustment T 2 caused by the time varying effect of l!N[k], while it increases 
the misadjustment T 1 caused by the noise in the coefficient vector wN[k]. 
There will be an optimum for a (leading in average to the smallest misad­
justment T 1 + T 2 ), depending on the amount of non-stationarity in h.N[k]. 

2.2 Normalized LMS (NLMS) 

2.2.1 NLMS Algorithm 

As the residual signal r[k) = ë[k] - (~N[k])tw[k] contains the input sig­
nal vector, convergence of the LMS algorithm depends on the varianee 
u![kJ = E{(x[k])2}.1 This effect can he cancelled by normalizing the adap­
tation constant a by an estimate u,;[k] of this variance. This results in the 
Normalized LMS (NLMS) algorithm 

(2.15) 

(2.16) 

Equations (2.15) and (2.16) are depicted in figures 2.3 and 2.2. In chapter 6 
procedures to. estimate the varianee are discussed. An efficient way to 
calculate the inverse input signal varianee is compared to direct varianee 
estimation. 

2.2.2 Properties of NLMS 

Most of the properties of NLMS are equal to the corresponding LMS prop­
erties: 

1To be more precise, convergence depends on 

N-1 
~ .E u;[k] = ~E{(~N[k])t~N[k]}. (2.14) 

i=O 

In the estimation procedures discussed in chapter 6 this is inherently taken into account 
by using the "past" of x[k] to obtain an estimate of u;[k]. 
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x[k] 

x[k- 1] 

y[k] ::::: 2aû;2[k]r[k] 

r[k] 

Figure 2.3: Normalized LMS (NLMS) algorithm. 

• Algorithm processing delay 

a_NLMS::::: 0. (2.17) 

• Computation processing delay (for only one multiplication, see ap­
pendix A) 

DNLMS < 1. (2.18) 

• Computational complexity, where WIj is the computational complex­
ity of the varianee estimation procedure (see chapter 6) 

'»NLMS 2·N+Wq 

~ 2·N. (2.19) 

• Memory occupation: 

- Input delayline (Iength N) 

- Weight vector wN (length N) 

0NLMS::::: 2 ·N. (2.20) 



2.3. BLOCKNLMS (BNLMS) 37 

2.2.3 Convergence and Tracking 

The normalization has cancelled the dependenee of the convergence be­
haviour on the input signal varianee (if one assumes that a perfect varianee 
estimator is used). This however only means that the adaptation constant 
is normalized, and has no influence on the relative distri bution of the eigen­
values of the autocorrelation matrix. This implies that the dependency of 
convergence behaviour on the eigenvalue distribution in the input signal is 
equal to that in LMS. 

2.3 Block NLMS (BNLMS) 

2.3.1 BNLMS Algorithm 

The Block NLMS (BNLMS) algorithm combines more or less B updates of 
the NLMS algorithm. This implies that only once every B input samples, 
thus once every B · T seconds, an update takes place, with the block length 
B ~ 1. To describe this mathematically, we will first introduce the N x B 
input signal matrix xN,B[KB]. The block index K is an integer, so KB 
denotes a time instanee that is an integer multiple of B. This matrix 
xN,B[KB] contains the B most recent input signa! veetors 

(2.21) 

and the adaptive weight vector at time instanee KB equals 

M!N[KB] = ( WN-I[KB] · · · w1[KB] wo[KB] )t. (2.22) 

The filter part of the algorithm yields the vector ~B[".B] 

(2.23) 

by combining B filter operations into one vector 

~B[KB) = ( (~N[KB- B + l])twN[KB] 

= (XN,B[KB])twN[KB]. 

(~N[KB])twN[KB] )t 
(2.24) 

Fortheupdate partwedefine the residual signal vector .r.B[KB] containing 
the B most recent residual signal samples as 

.r.B[KB] = ( r[KB- B + 1] · · · r[KB] )t 
= i[KB]- ~[KB]. (2.25) 
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By ta.king again the instantanous value of the gradient vector [8) and 
normalizing, like in the NLMS case, we get for the BNLMS update equation 

wN[(x: + 1)B] = wN[x:B] + o-;~:B] XN•8 [x:B].r.8 [x:B] (2.26) 

where o-;[x:B] is an estimate of the "hlock" varianee u;[x:B], defi.ned hy 
B-1 

u![x:B] = B ~ N L C{(~N[x:B- i])t~N[x:B- i]} (2.27) 
i=O 

Estimation procedures for o-;[x:B] can he found in chapter 6. The BNLMS 
algorithm is depicted in figures 2.4 and 2.5. The update of all weight coeffi.­
cients is performed once every B samples. The Serial to Parallel converters 
in fi.gure 2.4 denote the collection of B samples at rate 1/T =Is into one 
vector at rate Is/ B, while the Parallel to Serial converter denotes the in­
verse operation. The hoxes "tl'" depiet one sample delays, each delaying 
over B·T seconds ( caused hy the reduced sample rate intheUpdate hlocks). 
In the glossary at page 195 the symhols used in the fi.gures are descrihed. 

2.3.2 Properties of BNLMS 

Block processing has some consequences for the features of the Block NLMS 
algorithm: 

• The algorithm itself contains a delay (see fi.gure 2.4). This means for 
the algorithm processing delay ÄBNLMS that 

ÄBNLMS = B - 1. (2.28) 

• Computation processing delay for B multiplications and additions 
( see appendix A) 

DaNLMS < 1. (2.29) 

• Computational complexity, where Wu{B} is the complexity ofthe nor­
malization procedure ( that must he carried out once every B samples, 
see chapter 6) 

• Memory occupation: 

Wu{B} 
q;BNLMS = 2 . N + B . (2.30) 

- Input delayline (length N + B) and output values (length B) 
- Weight vector wN (length N) 

eaNtMs ~ 2. N + 2. B. (2.31) 
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x[k] 
x[k- 1] 

----r--1 ~ IE------t 

.r[k-B+l] 

Figure 2.4: Block NLMS (BNLMS) algorithm. 

JlB[KB] 

Figure 2.5: Update of BNLMS. 
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2.3.3 Convergence and Tracking 

The difference between NLMS and BNLMS is that the latter combines more 
or less B updates of the former without adapting the filter vector. This 
means that "older" filter vector valnes are used to produce an estimate 
of the unknown response. This implies that a B times smaller maximum 
value for the adaptation constant a can be chosen ( to ensure stability) ( see 
[24]). A second disadvantage is the delay occuring in the weight vector 
adaptation, which degrades the quality of tracking of the algorithm. In 
average, information of the unknown response takes B /2 samples extra to 
be processed into the adaptive filter vector update ( compared to (N)LMS), 
implying an extra misadjustment T 3 of the adaptive filter ( see also T 1 and 
T 2 in subsection 2.1.3). The average amount of change in the unknown 
impulse response during B /2 sample intervals defines the amount of extra 
misadjustment T3. 

2.4 Recursive Least Squares (RLS) 

2.4.1 RLS Algorithm 

The convergence behaviour of the algorithms introduced so far can be de­
graded heavily by the input signal eigenvalue distribution. To minimize 
the influence of the input signal correlation, the update equation can be 

decorrelated using an estimate 'k.: [k] of the N x N autocorrelation matrix 
'R.:[k] of the input signal. This yields the LMS-Newton algorithm [57], 
given by 

(2.32) 

with 

(2.33) 

Implementation of the above equations directly in time domain requires a 
matrix inversion every sample, implying in the order of N 3 multiplications 
per sample. By using a weighting factor ( or forgetting factor) in the mean 
squared error cost function and using an efficient inverse matrix update 
algorithm (with help of the matrix inversion lemma), exploiting the fact 
that the data shifts by only one sample, we obtain the Recursive Least 
Squares (RLS) algorithm. It still requires in the order of N 2 multiplica­
tions per sample. In literature other faster calculation methods have been 
introduced, like FTF [6, 42] (Fast Transveraal Filter) and FAEST [5] (Fast 
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Aposteriori Error Sequentia! Technique ). Stabilized versionsof these "fast" 
methods still require at least SN multiplications per sample. 

2.4.2 Block RLS 

Like in the NLMS case, we can construct a block computation version of 
the LMS-Newton algorithm by combination of B updates. This Block RLS 
(BRLS) algorithm is given by2 

(2.34) 

where 'k.~[,..;B] is an estimate of 

(2.35) 

with the input signal matrix de:fined in equation (2.21), the residual sig­
nal in (2.25), and the filtering operation as in (2.24). Working with block 
based equations induces an algorithm delay of B - 1 samples as in the 
BNLMS case, and will have in:fluence on the tracking properties (see sub­
section 2.3.3). 

2.4.3 Properties of RLS 

As there are a lot of different adaptive filtering algorithms based on the RLS 
method ( or an equivalent approach) we cannot speak about the properties. 
We can however mention some global measures. 

• Algorithm processing delay (in most algorithms) 

ÄRLS = 0. (2.36) 

• The computation processing delay equals the LMS computation pro­
cessing delay as the filter part of RLS is just a convolution like in the 
LMS algorithm. 

DRLS < 1. (2.37) 

• Computational complexity ( efficient implementation) 

(2.38) 

2 Note tha.t this is in {act not a block version of RLS, but of LMS-Newton. We could 
however also derive fa.ster ca.lcula.tion methods for this block-processing a.lgorithm. In 
the rest of this thesis we will refer to this block version of LMS-Newton by BRLS. 
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• Memory occupation: a few (5 to 10) length N veetors have to he 
stored in efficient implementations 

5 . N < eRLs < 10 . N. (2.39) 

2.4.4 Convergence and Tracking 

From literature it is known that in a stationary environment with a highly 
correlated input signal x[k] the convergence behaviour of RLS is supe­
riour to that of (B)(N)LMS [27] when the update parameters are opti­
mized. Convergence behaviour is made independent of the input signal 
(auto-)correlation. In non-stationary environments however, LMS might 
sometimes even perform better caused by measurement and algorithm noise 
[22, 3, 27]. 

When the relevant input signal correlation vector length Bp, with Pi[k] = 
C{x[k] · x[k- i]}~ 0 for i> Bp, is much smaller than the length N of the 
adaptive filter, an unnessarily large amount of calculations is needed for the 
inversion of the N x N autocorrelation matrix. Rednetion of this dimension 
is the subject of the following section. 

2.5 Block Orthogonal Projection (BOP) 

2.5.1 BOP Algorithm 

In the RLS algorithm and its fast derivates the dimension of the input sig­
nal autocorrelation matrix used to decorrelate the update, equals the filter 
length N. As the input signal correlation length in general does not have 
anything in common with the length of the filter, we can try to reduce 
computational complexity by reducing the dimension of the inverse auto­
correlation matrix. In this section a technique is given that can decorrelate 
an input signal of an adaptive filter with N weights, by using a B x B 
autocorrelation matrix (B 2::: 1). 

In [35] a B-step Orthogonal Projection (OP) method is introduced. 
With this OP method a projection is made on an B dimensional hyperplane. 
In general there are two variants to implement this idea 

• The "sliding" procedure that uses in every iteration only one new in­
put signal sample. This is the B-step Orthogonal Projection method 
(OP) as described in [35]. 
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• The "block" approach that uses B new samples and performs only 
. one update of the adaptive weight vector every B samples. This is 
the Block Orthogonal Projection (BOP) algorithm [25, 44]. 

The BOP algorithm is explained insome more detail, as it will he the basis 
for the introduetion of the frequency domain algorithms in the following 
chapters. 

In order to derive the BOP algorithm we will use a geometrical inter­
pretation [35, 29]. We de:fine the difference vector !!N[KB] as the difference 
of the adaptive weight vector wN[KB] and the unknown system h.N[KB], 
thus !!N[KB] = h.N[KB]- wN[KB]. The geometrical procedure is that we 
:first make a projection of !!N[KB] on a B dimensional hyper~plane, spanned 
by B veetors z.N[KB- B + 1] till z.N[KB] in an N dimensional hyper~space. 
This projection is made by interpreting the difference vector !!N[KB] as a 
sum of two components, one perpendicular (!!f[KB]) and the other parallel 
(.4J7[KB]) to the hyper~plane, as depicted in :figure 2.6. 

-2aN .4f7[KB] 

Figure 2.6: Geometrie interpretation of BOP algorithm. 

Mathematically this geometrie interpretation described as 

(2.40) 

where the perpendicular component !!f[KB] of !!N[KB] is pependicular to 
all z.N [ x:B - i] for 0 5 i < B 

(2.41) 
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and the parallel component .d~[,.,;B] is lying in the hyper-plane 

B-1 

L ai[KB]~N[,.,;B- i] 
i=O 

{2.42) 

with the B dimensionaJ. vector _qB[,.,;B] defined as 

(2.43) 

To ohtain a simple derivation of the al.gorithm, we first assume s[k] = 0. 
Later on we will use the same al.gorithm for the case s[k] ::j:. 0.3 Now the 
residuaJ. signa! vector rB[,.,;B] can he written as 

(2.44) 

We have to find a procedure to calculate the coefficients of the vector 
g_B[,.,;B]. This can he done hy using the fact that .d~'[,.,;B] is perpendicu­
lar to all veetors ~N[,.,;B- i] for 0::::; i < B- 1, so 

!B[,.,;B] = (XN,B[,.,;B])tflN[,.,;B] 

(XN,B[,.,;B])t~[,.,;B] 

= (XN,B[,.,;B])tXN,B[,.,;B]g_B[,.,;B]. 

The solution of these equations is given hy 

where 
fl~(,.,;B] = ~(XN,B[,.,;B])tXN,B[,.,;B] 

is an estimate of the B x B autocorrelation matrix 'R.~[,.,;B].4 

(2.45) 

(2.46) 

(2.47) 

3 In practice, this means tha.t when s[k] is (highly) correlated, a.daption of the coef­
ficients ha.s to he frozen (in the previously introduced algorithms, the same problem is 
encountered). In cha.pter 8, where the implementa.tion of an acoustic echo ca.nceller is 
discussed, this problem occurs ("double talk"). 

'The matrix (XN·B[~~:BWXN•B[~~:B] can only be inverted if it ha.s fnll rank, which 

requires (at least) that B :5 N. By using an a.pproxima.tion of il.:[~~:B] this problem is 
a.voided. 
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The update procedure "rotates" the vector gN[KB] in such a way that 
it becomes more orthogonal to the previous data, and reduces its length, 
by using the following update equation 

gN[(K + l)B] = gN[KB)- 2aN · .4fi[KB] 

= gN[KB] - 2aXN,B[KB]('R.~[KB])-1.rB[KB]. (2.48) 

This equation leads, with the definition ofthe difference vector, to the BOP 
update equation 

(2.49) 

In figures 2. 7 and 2.8 the whole BOP algorithm is depicted. Comparing 
this algorithm to the BNLMS and NLMS algorithms shows that the BOP 
algorithm is an extension of the BNLMS algorithm. The input signal is 
decorrelated with a B x B estimate fl-~[KB] of the autocorrelation matrix 
'R.:[KB). 

Implementation of the .BOP equation directly in time domain requires 
a matrix inversion and multiplication every block, implying in the order of 
N + B2 multiplications per sample. In literature, like in the RLS case, fast 
calculation methods have been introduced, based on a sliding version of the 
BOP algorithm. The FNTF (Fast Newton. Transveraal Filter) [32, 38] still 
requires at least 2N + 6B multiplications per sample. 

2.5.2 Decoupled BOP 

In the BOP algorithm the inverse autocorrelation matrix dimension is de­
coupled from the filter length N, but coupled to the block length B. By 
splitting a BOP algorithm with matrix order Q, into QJ B parts this cou­
pling can he removed.5 Such a BOP algorithm with block length Q and 
block index K

1 can he written as 

wN((K1 + l)Q) = wN(K1Q] + 2aXN,Q(K1Q]('R.~[K1Q])-1_rQ(K1B]. (2.50) 

Now we try to reverse the order of the input signal matrix xN,Q[K'Q] and 

the (inverse) autocorrelation matrix estimate ('R.~[K'Q])- 1 . The autocor­
relation matrix estimate can he written as 

fl_~[K1Q] = _!_(XN,Q[K'Q])tXN,Q(K1Q] 
N 

5 We assume for the moment tha.t N in a.n integer multiple of Q and Q is a.n integer 
multiple of B. When N is not a.n integer multiple of Q, the a.da.ptive filter vector ca.n be 
extended with fN/Ql· Q- N coefficients tha.t are kept zero. 
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x[k] 
x[k- 1] 

---...----1 a lf--------1 

r[k- B + 1] 

Figure 2.7: Block Orthogonal Projection (BOP) algorithm. 

Jt[~i:B] 

Figure 2.8: Update of BOP. 
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For large Q the above can be approximated for 0 $ j < NI Q by6 

fl~[n'Q] ~ ~ (A4,(~[(n'- j)Q])tx<J.Q[(~t'- j)Q] (2.57) 

implying that for 0 $ j < NI Q 

xQ,Q[(n'- j)Q]('k.Q[~t'Q])-1 ~ ('k.~[n'Q])-1 x<J•Q[(n'- j)Q]. (2.58) 

By using the above relation (2.58), we obtain 

6 For a sta.tionary signal x[k], we note that for all 0 :$ j < N/Q 

E{(XQ,Q[x'Q])t XQ,Q[x'Q]} = E{(Xq,q[(x'- j)Q])' ;rQ,Q[(x'- j)Q]} (2.52) 

which implies that for all 0 :$ j < N /Q 

{ 
.g-1 } 

E ~ ~(XQ,Q[(x'-i)Q])'XQ,Q[(x'-i)Q] (2.53) 

= ~E { (XQ,Q[(x' j)Q])' XQ,Q[(x'- j)Ql}. 

(2.54) 

For la.rge Q, the expectation approximates its momentaneons estima.te 

E { (XQ,Q[x'Q])t ;rQ,Q[~~:'Ql} ~ (XQ,Q[~~:'QJ)' XQ,Q[~~:'Q]. (2.55) 

This all implies that for 0 :$ j < {§ 

.g-1 
~ I: (XQ,Q((~~:1 -i)Q])' .fQ•Q[(~~:1 -i)Q) ~ ~(.fQ•Q((~~:1 -j)Q])'.fQ•Q((x'- j)Q). (2.56) 

i=O 
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(2.59) 

with 

('k~[K'Q])-1 oo oo 
oo 

oo 
(2.60) 

oo ('k~[K'Q])-1 

Incorporating this in equation (2.50} we get 

wN[(K1 + l)Q) = WN[K1Q] + 2a('k~Q[K1Q])-1 XN,Q[K1Q]_rQ[(K1Q). (2.61) 

By defining 

(2.62) 

equation (2.61) can he split into Q I B parts as follows 

_!!!N[(K1 + l)Q) = wN[K1Q) + 2a('k:Q[K1Q])-1 (2.63) 

j-1 ( fJ.Q-B-iB ) 
• I: XN,Q[K1Q] • _rB[(K1j- i)B) · 

i=O fl'B 

Note that for all 0 :$i< N IQ 

By using the above relation and performing an inverse "block computation 
transformation" on equation (2.63), we get the DBOP update formula 

wN[(K + l}B) = wN[KB] + 2a('k:.Q[KB])-1XN,B[KB].rB[KB]. (2.65) 

In the first instance, the above equation seems very unattractive because 
of the large matrix multiplication involved. In chapter 4 we will introduce 
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an efficient implementation. H we compare equation (2.65) with the BRLS 
update equation (2.34), we see that the N x N autocorrelation matrix esti-

mate 'Îl: [x:B] is appoximated hy 'Îl:.q[x:B]. Assuming that BRLS achieves 

"perfect" decorrelation, a matrix ('Îl~q[x:B])-1 • 'Îl:[x:B] remains. The 
eigenvaJ.ue distribution of this matrix defines the convergence behaviour of 
(D)BOP. 

2.5.3 Properties of BOP 

Block processing has some consequences for the features of the BOP algo­
rithm: 

• Extra algorithm processing delay of B - 1 samples 

~BOP= B -1. (2.66) 

Fast versions, hased on a sliding algorithm, have no algorithm delay. 

• The computation processing delay for small B equals the BNLMS 
computation processing delay 

DBoP < 1. (2.67) 

In the FNTF the computation processing delay equals the LMS com­
putation processing delay, like in the RLS (FTF) case. 

• Computational complexity ( efficient implementation) 

WBOP ~ 2 · N + 6 · B. (2.68) 

• Memory occupation: a few (5 to 10) length N veetors have to he 
stored in efficient implementations. 

5 . N < eBoP < 10 . N. (2.69) 

2.5.4 Convergence and Tracking 

The convergence properties of fast versions (hased on sliding OP) will be 
inbetween those of NLMS and RLS, depending on the matrix dimension 
B, for BOP, or Q, for DBOP. In general, the choice of this matrix di­
mension will give good decorrelation properties if the input signal can he 
decorrelated by an autocorrelation matrix of order sufficiently smaller than 
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B (or Q) [45, 12, 32, 38]. If the input signalis not white, there will al­
ways remain correlation between two adjacent blocks caused by the matrix 

('k..:.q[nB])-1 • 'R.:[nB]. Increasing Q will decrease this inter-block cor­
relation. lf this matrix dimension is sufliciently larger than the relevant 
length of the autocorrelation vector, the total inter block correlation ( that 
remains) is much smaller than the amount of correlation within the blocks, 
that is removed by the (D)BOP algorithm. 

lf the latter is the case, then the (D)BOP algorithm behaves approxi­
mately as a BNLMS algorithm with white noise as input signal. Increasing 
the matrix dimension towards N will then increase noise and computational 
complexity without improving convergence and tracking properties. 

Increasing the matrix dimensions means that we need more sample in­
tervals to make an equany accurate estimate of the current (inverse) auto­
correlation matrix. When the input signal is stationary, this is no problem. 
lf we are dealing with a highly correlated and non-stationary signal ( such 
as speech) the decorrelation of the input signal can become worse for larger 
matrix dimensions. As less decorrelation, in most cases, reduces speed of 
convergence, tracking properties of the algorithm might even degrade when 
the matrix dimension is increased. 

2.6 Example of Time Domain Algorithms 

In our example we want to realize a length N = 4000 adaptive filter with 
a delay of 0.5 milli-seconds, at a sample rate of 8000 Hz. For (N)LMS 
and B(N)LMS this means that we have to perform 2 · N = 8000 multipli­
cations per sample. With a sample rate of 8000 Hz, this means 64 · 106 

multiplications per second. This makes realization on one ( or even a few) 
DSPs with the current state of technique impossible. Besides that, both 
algorithms suffer from very bad convergence behaviour for colaroured input 
signals like speech. Fast implementations of RLS and BOP do require an 
even larger amount of multiplications per second (from slightly more than 
64 ·106 for FNTF to alleast 256 ·106 for FTF). In figure 2.9 the complexity, 
delay and memory of the diverse time domain algorithms are depicted as 
a function of the block length B. For sliding algorithms (such as LMS, 
FTF and FNTF) where parameters do not depend on the block length, 
processing delay is always 1 ( see appendix A) and is not depicted. 
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Figure 2.9: Properties of time domain algorithms. 



52 CHAPTER 2. TIME DOMAIN ADAPTIVE FILTERING 

2. 7 Conclusions 

For smaJI adaptive filters, the RLS algorithm ( or red u eed complexity ver­
sions of RLS) might he a good solution. The huge computational complex­
ity of all time domain algorithms makes implementation of large adaptive 
filters on one ( or even a few) DSPs impossible. Besides that, the simplest 
algorithms suffer from very bad convergence behaviour for highly colonred 
input signals. We therefore have to look at ways to rednee computational 
complexity in the (D)BOP (or (B)RLS) algorithms. This can he done with 
the help of fast implementations of Discrete Fourier Transforms, as will he 
shown in the next chapters. 



Chapter 3 

Block Frequency Domain 
Adaptive Filtering 

The two main operations to imptement an adaptive algorithm are a (linear) 
convolution, to perform the filtering of the input signal with the adaptive 
weights, and a (linear) correlation, to calculate an estimate of the gradient 
that is needed for the update of the adaptive weights. For large filter lengths 
N these operations can be carried out efficiently in frequency domain by us­
ing Fast Fourier Transforma (FFTs) for the transformation between time­
and frequency-domain {34}. Overlap-save is a well known technique to con­
volve an infinite length input sequence (e.g. the input signa/ samples x[k]) 
with a finite length impulse response (e.g. the N adaptive weights wi). 

An efficient implementation of the overlap-save method, is used to real­
ize the BNLMS algorithm in frequency domain, resulting in the Frequency 
domain BNLMS (FBNLMS) algorithm. Like in time domain, we also like 
to improve convergence behaviour in frequency domain. The BRLS and the 
BOP algorithm of the previous chapter can be implemented in frequency 
domain by making some small changes in the FBNLMS algorithm and us­
ing some approximations. The result is a generalized version of the Block 
Frequency Domain Adaptive Filter (BFDAF). 

3.1 Overlap Save Metbod 

3.1.1 Introduetion 

In this section we will review the overlap-save method for :fixed filters, 
therefore we assume that the weight vector wN is :fixed for the moment. As 

53 
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described before, using a. block processing approach implies tha.t ea.ch step 
a. block of Boutput samples is calcula.ted (B ?: 1). These output samples 
are collected in the length B vector ~B[r;;B],1 described by 

(3.1) 

where 

XN,B[r;;B] = ( ~N[r;;B- B + 1] · · · ~N[r;;B] ) (3.2) 

~N[r;;B] = ( x[r;;B- N + 1] · · · x[r;;B] )t (3.3) 

WN = ( WN-1 • • •Wo )t. (3.4) 

With the overlap-save method it is possible to implement the a.bove given 
linea.r convolution efficiently in frequency doma.in. It uses a. length M seg­
ment of the input signal x[k] to obta.in a. pa.rtial convolution of tha.t input 
signal a.nd a. length N weight vector wN. With M ?: N - 1 + B the proce­
dure genera.tes ea.ch step B new output samples in a vector ~B[r;;B].2 This 
method ca.n be implemented with Discrete Fourier Tra.nsforms (DFTs) ( or 
a. fa.st version of DFTs: Fa.st Fourier Transforma (FFTs)). 

3.1.2 Diagonalization with DFTs 

The ma.in problem of the calcula.tions in equa.tion (3.1) is tha.t a. matrix 
a.nd a. vector have to be multiplied. With help of DFTs this matrix ca.n 
be transformed toa dia.gonal matrix (diagonaliza.tion) [9]. The DFT of a. 
length M vector ~M[r;;B] is defined for alll, 0 ~ l < M as 

XM[r;;B] = :FM . ~M[r;;B] 

with the l'th element (XM[r;;B])z of XM[r;;B] given by 

M-1 

(3.6) 

(XM[r;;B])z = L x[r;;B- M + 1 +i]· e-J2'~~"~. (3.7) 
i=O 

1The block index ,;, is a.n integer, thus ~CB denotes a time instanee tha.t is a multiple 
of B. 

2 Note that the matrix ;rN,B[~eB] consists of the sa.mples x[~~:B- N-B+ 2] till x[ ~eB]. 
It can thus he constructed using a length N + B- 1 segment of the input signal. We 
assume the use of a length M segment in order to choose a DFT length later on that is 
a power of two (for efficient computation purposes) by ta.king 

(3.5) 
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The length Minput signal vector ~M[~B] contains the lastMinput signal 
samples 

M ( x[~B -.M + 1] ) 
~ [~B] = : . 

x[~B] 

(3.8) 

The elements of the M x M Fourier matrix :FM are defined for all 0 :5 a < 
M and 0 :5 b < M as 

M 2 4•Ó 

(:F )a,b = e-1 1tTf. (3.9) 

The inverse transformation (the Inverse DFT (IDFT)) then is defined as 

with 

~M[~B] = (:FM)-1. XM[~B] 

= ~(:FM)*. XM[~B] 

(~M[~B])1 = x[~B - M + 1 + l] 
M-1 

= ~ 2:: (X[~B])ï · é321f~. 
i=O 

(3.10) 

(3.11) 

Three properties of these Fourier-matrices and transforms are of special 
interest for our purpose: 

1. Orthogonality: 

(3.12) 

2. Shift invariancy: for all integers b, with 0 :5 b < M and all integers 
d: 

3. For all integers a, with 0 < a < M :3 

M-1 
"" - )21f•.!!.:!! - 0 L.Je M-. 

b=O 

For a = 0 the above sum equals M. 

(3.13) 

(3.14) 

3This property follows directly from equation 3.12 (by substituting equation (3.9)). 
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With these properties circulant matrices can be diagonalized [9]. A circu­

lant M x M matrix CM is de:fined for all 0 :$ a < M and 0 :$ b < M 
by 

vM 
(C )a,b = Cl~JM (3.15) 

( 

CO CM-1 ''' C2 Ct ) 

CM = C:1 CO ' ' ' C:3 ~2 . 

. . . 
CM-1 CM-2 C1 CO 

(3.16) 

We will now show that pre- and post-multiplication of this circulant matrix 
CM by the Fourier matrix :FM and its inverse (:FM)-1 yields a diagonal 

matrix :FM· CM· (:FM)-1 • Knowing that 

M-1 

( M M) '""' -321r"'' :F ·C a,b = L-t cl'i/JM ·e M, 

i=O 

(3.17) 

applying the shift invariance properties and replacing i - b by g gives 

(:FM. cM. (:FM)-1 )a,d 
M-1 

= .2: (:FM· CM)a,b · ((:FM)-1)b,d 
b=O 

M-1M-1 
1 '""' '""' -J21r.a:.i. +J21r!:!! = M L-t ~ cL'.MbJM · e M • e M 

b=O t=O 
M-1 M-1 

1 '""' -J21rfl:!! '""' +J211'·b·(tra) = M L-t cg • e M • L-t e . 
g=O b=O 

(3.18) 

The third property of circulant matrices says that the sum on the right 
hand side of the above equation equals zero .if d ::f; a, which implies that all 
non-diagonal elementsof the matrix :FM· cM· (:FM)-1 equal zero, thus 

(3.19) 

where ç_M is the Fourier transform of the :first column of cM 

M-1 
cM = L Cg • e-J211'V 

g=O 
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( 

co ) :FM. : . 

CM-1 

(3.20) 

3.1.3 Block Frequency Domain Convolution 

We can use the diagonalization technique if we can transform the matrix 
xN,B[~~:B] toa circulant matrix. Starting with equation (3.1) we get 

~B[~~:B] = (XN,B[~~:B])t. wN 

= (XN,B[~~:B])t. JN. JN. WN (3.21) 

with the N x N mirror matrix J N defined as 

0 

0 1 

0 1 

1 0 

1 0 0 

The matrix (XN,B[~~:B])t · JN, given by 

(XN,B[~~:B])t. JN 

(3.22) 

= ( x[~~:B -: B + 1] · · · x[~~:B- ~- N + 2] ) ' (
3
.
23

) 

x[~~:B] x[~~:B- N + 1] 

can. now easily by extended to a circulant matrix, and used in the con­

volution of equation (3.21). If wedefine a circulant extension ~[~~:B] of 
(XN,B[~~:BW. JN as 

~(~~:B] = ( (XN,B[~~:~])t.JN ~) (3.24) 

= 

x[~~:B- M + l] x[~~:B] · · · x[~~:B- M + 2] 

x[~~:B] 

x[~~:B-M+1] 

and an extension ibM of J N . wN by 

ibM = ( J:~-~N) 
= ( Wo .. · WN-1 (.QM-N)t )t (3.25) 
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then the result ~8 [KB] of the convolution is given by 

(3.26) 

Now the DFTs can be applied to equation (3.26) 

( oB,M-B IB ) (:FM)-l:FM ~[KB](:FM)-1:FMwM 

( oB,M-B 18 ) (:FM)-1diag{XM(KB]} · WM 

( 0B,M-B 1B ) (:FM)-l(XM[KB] ® wM) (3.27) 

with Q9 the elementwise multiplication. As XM [KB] is a circulant matrix, 

:FM~ [KB](:FM)-1 = diag{XM[KB]} is a diagonal matrix, with 

(3.28) 

The transformation of the filter vector wN is given by 

(3.29) 

The whole procedure for fixed filters is depicted in figure 3.1. Each it­
eration B new consecutive input signal samples x[k] are collected ("S/P"). 
These collected samples are put into overlapping length M veetors ~M[KB] 
("Overlap"), that have an overlap of M-B samples with the input vector of 
the previous block. The vector ~M[KB] is transformed to frequency domain 
("DFTM"), resulting in XM[KB]. Furthermore the length N weight vector 
wN is first mirrored ("JN") and then augmented with zeroes ("QM-N") 
to a vector of length M. The resulting length M vector is transformed 
to frequency domain. The ( cyclic) convolution is carried out in frequency 
domain by an elementwise multiplication ("®") ofthe two veetors XM[KB] 
and wM. Finally the result xM[KB] ® wM is transformed back to time 
domain by an inverse Fourier transfarm ("IDFTM"). Only the last B out 
of M samples from this cyclic convolution represent the desired linear con­
volution result. Thus M - B samples have to be discarded, resulting in 
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ê[k- B + 1] 

Figure 3.1: Block Frequency Domain Convolution. 
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the length B vector t 8 [1\":B]. The original sample rate is obtained by de­
segmenting ("P /S") this vector into samples ê[KB- B + 1] to ê[I\":B]. 

The above described Block Frequency Domain Convolution (BFDC) 
takes one DFT and one IDFT for fixed filters. The DFT for the weight 
vector is superfluons when the weight vector wN is constant. When the 
overlap-save technique is applied in adaptive filtering this DFT however is 
necessary, which means that 3 transfarms are needed then. 

3.1.4 Properties of BFDC 

With the help of appendix A the next features of the Block Frequency 
Domain Convolution can be derived: 

• Algorithm processing delay 

~BFDC = B -1. (3.30) 

• Computation processing delay for FFT, IFFT and elementwise mul­
tiplication 

(3.31) 

• Computational complexity: computation of FFT, IFFT and elemen­
twise multiplication 

•T• 2 · WFFT{M} + 'li®{M} 
~BFDC = B . (3.32) 

• Memory occupation: 

- Input delayline (length M) and output samples (length B) 

- FFT inputfoutput (length M) 

- Twiddle factors (elements of :FM) (number < M) 

- Weight vector WM (length M) 

E>aFoc ~ 4 · M + B. (3.33) 

3.1.5 Example of BFDC 

Our example illustrates the relation between delay and complexity. In table 
3.1 and figure 3.2 the BFDC complexity, delay and memory are given as a 
function of the block length B for a filter length N = 4000. The sudden step 
in E>sFoc, DsFDC and 'llsFoc is caused by the doubling ofthe FFT length 
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M. As our example requires a filter length of (at least) 4000 coefficients 
and the FFT length is a power of two (see appendix A), we use M = 4096 
for B :S 64 and M = 8192 for B ~ 128. 

256 512 
8192 8192 
255 511 
176 176 

0.352 

Table 3.1: Delay, complexity and memory of BFDC. 
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Figure 3.2: Properties of BFDC. 

Because of the large FFTs needed (even for small B), the implementa­
tion always results in large computation processing delay. From the previ­
ous chapter we know that a time domain convolution requires 4000 multi-
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plications per sample. For a block length B > 20, the complexity WBFDC 

is sma.ller than the time doma.in convolution complexity. 

3.2 Frequency Domain BNLMS 

3.2.1 FBNLMS Algorithm 

The Frequency doma.in BNLMS (FBNLMS) is an efficient implementation 
for the BNLMS algorithm of chapter 2. The BNLMS a.lgorithm consists 
of a linea.r convolution, to perform the filtering of the input signal with 
the adaptive weights, and a linea.r correlation, to calculate the gra.dient 
estimation that is needed for the update of the adaptive weights. The 
convolution is implemented a.s a BFDC of the previous section, while now, 
of course, we have to perform an extra FFT once every B samples in order 
to get the Fourier tra.nsform of the weight vector. 

The BNLMS update equation (2.26) that has to be tra.nsformed to 
frequency doma.in, conta.ins the correlation xN,B[".;B].r.B[KB]. First we have 
to generate a circulant matrix by extending the matrix xN,B[KB], like in 
equation (3.24). The correlation then can be expressed as 

XN,B[".;B].r.B[KB] 

= ( JN 0N,M-N ) ( ; 

Note that the above circulant input signi:ll matrix is the exact transpose of 
the matrix ~[".;B] in equation (3.24), thus 

XN,B[".;B].r.B[".;B] 

( JN 0N,M-N) (:FM)-1:FM(~[".;B])t(:FM)-1:FM ( QM-B ) 
.r.B[".;B] 

= ( JN 0N,M-N) (:FM)-1(:FM ~[".;B](:FM)-t)h. RM[".;B] 

= ( JN oN,M-N ) (:F~)-1 ((XM[".;B])* ® RM[".;B]) (3.35) 

where XM[KB] is defined in equation (3.6) and 

(3.36) 

The correlation in the BNLMS update equation (2.26) can be substi­
tuted with help of equation (3.35), which results in the FBNLMS update 
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equation 

!QN((,.; + l)B] = wN[,.;B] + u~~=B] ( JN oN,M-N ) 

·(.?='M)-1((XM[,.;B])* ® RM[,.;B]). (3.37) 

The FBNLMS algorithm is depicted in figure 3.3. The residual signal 

x[k] 

B 

r[k-B+l] ë[k] 

Figure 3.3: Frequency domain BNLMS. 

r[k] is obtained by putting the signal ë[k] in a length B vector ~B[,.;B] 
("S/P"). The length B residual signal vector is then given by .rB[,.;B] = 
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~8[";B] - ~8[";B]. The return to the original sample rate is carried out by 
desegmenting the residual signal vector ("P /S"). This results in the delayed 
residual signal r[k....,. B + 1]. 

For the update part first the residual vector r 8 [";B] is multiplied by 
2aju~[";B] before it is augmented with zeroes (",qM-8 ") to a length M 
vector,4 and this vector is transformed to frequency domain ("DFTM"). 
Note that the main difference between the correlation and convolution op­
eration is refiected in frequency domain in the fact that correlation needs a 
complex conjugate operation ("*") ofthe input signal vector XM[";B], and 
the convolution does not. 

Like in the BNLMS algorithm of equation (2.26), the normalization is 
carried out in such a way that the the number of multiplications is mini­
mized. For this each element of !:B[";B] is first multiplied by the adaptation 
constant 2au;2[";B]. The two mirror operations JN in figure 3.3, one be­
fore and one after the update of the adaptive weight vector, can easily he 
combined and left out. In order to keep the separate implementations of 
the convolution and correlation operations visible, this has not been done. 

3.2.2 Properties of FBNLMS 

With help of appendix A the next features ofthe Frequency domain BNLMS 
algorithm can he derived: 

• Algorithm processing delay 

ilFBNLMS = B -1. (3.38) 

• Computation processing delay for FFT, IFFT and elementwise mul­
tiplication 

DFBNLMS = 2 · DFFT{M} + D®{M}. (3.39) 

• Computational complexity: computation of FFTs, elementwise mul­
tiplications and normalization 

,T, 5 · WFFT{M} + 2 · W0{M} + Wu{B} 
'JI"FBNLMS = B . (3.40) 

• Memory occupation: 

•To minimize the number of multiplica.tions (when B < N), this multiplication is 
performed there (requiring B multiplica.tions), instead of after the IDFT (which would 
require N multiplications). 
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- Input delayline (length M) and output samples (length B) 

- FFT inputfoutput (length M) 

- Twiddle factors (elements of :FM) (number < M) 

- Weight vector WM (length M) 

- Normalization (length B) 

E>FBNLMS < 4 ·M + 2 ·B. (3.41) 

3.2.3 Convergence and Tracking 

As the FBNLMS algorithm is an exact transformation of the BNLMS algo­
rithm, the dynamic behaviour of both the adaptive filtering algorithms is 
identical (see subsection 2.3.3). The FBNLMS update equation (3.37) can 
be written in frequency domain using equation (3.29) as 

with the window matrix Vt/ given by 

= ( JN oN,M-N ) . ( JN ) 
oM-N,N 

= ( 1N 0N,M-N) 
oM-N,N oM-N · (3.43) 

H we leave out this windowing matrix Vt/ [31, 46], a DFT and an IDFT 
become superfiuous, and can be removed, leading to the following Uncon­
strained FBNLMS update equation that uses only three (I)DFTs (instead 
of five) 

WM[(~;; + l)B] = WM[~;;B] + O';~:B]((XM[~;;B])* ® RM[~;;B]). (3.44) 

Because the circular behaviour of the frequency domain convolution is no 
langer cancelled, there is a coupling between the part of the coefficient 
update that we desire (the first N elementsof (XM[~;;B])* ® RM[~;;B]) and 
the part we wou1d liketoskip (the last M- N elementsof (XM[~;;B])* ® 
RM[~;;B]). As long as the length ofthe unknown system h. is smaller than N 
[31] the only effect is that M- N more weights are fluctuating around zero, 
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which increases the final misadjustment hy a factor (M- N)/N without 
any effect on the rate of convergence [46]. 

When the unknown system impulse reponse is longer than N, the uncon­
strained algorithm no longer converges to the Wiener salution [31], which 
can even lead to divergence of the algorithm. 

3.3 BFDAF Algorithm 

3.3.1 Filter Part 

Using an equivalent approach as in suhsection 3.2.1 , we will descrihe here 
an efficient way to perform decorrelation hy the inverse input signal auto­
correlation matrix, in frequency domain, resulting in the Block Frequency 
Domain Adaptive Filter (BFDAF). As a basis for transformation to the 
frequency domain, one out of two time domain algorithms, the BOP and 
BRLS algorithm, will he used, depending on the choice of the hlock length 
B and the filter length N. As the filter part of hoth algorithms is equivalent 
to the filter part of the BNLMS algorithm, also the filter parts of FBNLMS 
and BFDAF are equal (see equations (3.1), (3.21), (3.27) and figure 3.1). 

The update equation (2.49) ofthe BOP algorithm and the update equa­
tion (2.34) of the BRLS algorithm can also he implemented efficiently in 
frequency domain. When the hlock length B is larger than the filter length 
N, BOP is used. On the other hand, if the filter length N is larger than 
the hlock length B, BRLS is used as basis. Both approaches lead to the 
same algorithm, with the use of some approximations. In chapter 6 we will 
show that if the hlock length B is larger than the filter length N, the BOP 
algorithm is indeed the best basis (leading to the smallest approximation 
error). On the other hand, when Bis smaller than N, the BRLS is the 
best choice. 

3.3.2 BOP as Basis 

The BOP update equation (2.49) is rewritten as follows 

(3.45) 

with 
(3.46) 

The implementation of xN·8 [t>:B]y8 [t>:B] is equivalent toequation (3.35) 
with the only difference that RM[;B] must he replaced hy the vector 
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yM[KB]. The frequency domain transfarm yM[KB] of JlB[KB] is defined 
as 

(3.47) 

For large block lengths B this is a very unattractive equation to compute 

in time domain, as the matrix inversion (-k.~[KB])-1 needs in the order of 
B3 multiplications. With the use of some approximations however, we can 
transfarm the inverse autocorrelation matrix (-k.~[KB])-1 to a circulant 

M x M matrix (fl!1[KB])-1 (whose inverse is also circulant) [9]). This 
procedure is described in chapter 6 and results in 

(3.48) 

with 

(3.49) 

This circulant matrix fl~ [ tt:B] can he diagonalized with the Fourier matrix 
:FM as follows 

diag{~[KB]} = :FMflM[tt:B](:FM)-1 (3.50) 

= !t{:FM xM[KBJ(~[tt:BDt<:FMr1} 

with the input signal power vector (see also chapter 6) 

e[KB] = ~&{(XM[tt:B])* ® XM[tt:B]} 

= ~E{IXM[KB]I2 }. (3.51) 

Combining equations (3.45) to (3.50) and using an estimate ei'; (KB])-1 

of (e[KB])-1 results in the following BFDAF update formula 

wN[(tt: + l)B] = wN[tt:B] + 2a ( JN oN,M-N ) (:FM)-1 

·((XM(tt:B])* ® (.Ê'~[KB])-1 ® RM[tt:B]). (3.52) 
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(~[nB])-1 denotes elementwise inverse of ~[nB], as 

(3.53) 

implying that for 0 ::; i < M 

(3.54) 

. ÁM 
In chapter 6 several methods for calculating an estimate (f!.a: [~~:B])- 1 of the 
inverse power vector (~(nB])-1 directly from the input signal frequency 
domain transform XM[~~:B] are given. The result of the above described 
efficient implementation of ( an approximation of) the BOP algorithm in 
frequency domain is called the Block Frequency Domain Adaptive Filter 
(BFDAF) [8], from which the implementation is depicted in figure 3.4. 

3.3.3 BRLS as Basis 

The same result as in the previous section can he obtained by using the 
BRLS update equation {2.34) as basis, given by 

(3.55) 

To obtain an efficient realization, also bere approximations to circulant 
matrices will he used. In chapter 6 it is shown that the above can he 
approximated by 

(3.56) 

Since the order in a product of circulant matrices may he interchanged, 
this equation is equal to the one obtained with BOP as basis, so the above 
can he transformed to the BFDAF update equation (3.52). 

3.3.4 Properties of BFDAF 

With appendix A the next features of the Block Frequency Domain Adap­
tive Filter can he derived: 

• Algorithm processing delay 

~BFDAF = B - 1. (3.57) 
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x[k] 

r[k-B+l] ë[k] 

Figure 3.4: BFDAF algorithm. 
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• Computation processing delay for FFT, IFFT and elementwise mul­
tiplication 

DsFDAF = 2 · DFFT{M} + D~dM}. (3.58) 

• Computational complexity: computation of FFTs, elementwise mul­
tiplications and decorrelation (see appendix A) 

WBFDAF = 5 • WFFT{M} + 2 • W11dM} + Wp{M}. 
B 

(3.59) 

• Memory occupation: 

- Input delayline (length M) and output samples (length B) 

- FFT inputfoutput (length M) 

- Twiddle factors (elements of :FM) (number < M) 

- Weight vector WM (length M) 

- Decorrelation (Iength M /2) 

9 
E>sFDAF ~ 2 ·M + B. (3.60) 

3.3.5 Convergence and Tracking · 

In a stationairy environment, the normalization makes the algorithm be­
have as an FBNLMS ( and thus as a BNLMS) algorithm with a white noise 
input signal, provided that the approximation error is suffi.ciently small. 
This means that the convergence behaviour of the RLS algorithm can be 
obtained by BFDAF. As we strive towards algorithms with low processing 
delay for large adaptive filters, thus assuming that N ::> B, the approxi­
mation error can be neglected ( see chapter 6, subsections 2.4.4 and 2.5.4 
and (46]). If N ::> B, then the BFDAF algorithm is an (approximated) 
transformation of BRLS, implying that the difference between RLS and 
BFDAF merely consistsof the consequences of block-based computation. 

Compared to RLS, tracking will suffer from the same problems as 
BNLMS compared to LMS. These problems, caused by the block process­
ing technique, are described in more detail in subsection 2.3.3. Like in the 
FBNLMS case of subsection 3.2.3, also here an unconstrained version can 
be obtained by skipping the window (and two Fourier transforms). This 
Unconstrained BFDAF [31] has the same problems as the Unconstrained 
FBNLMS. 
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3.4 Example of BFDAF and FBNLMS 

Our example illustrates the relation between delay and complexity. In table 
3.2 and tigure 3.5 the FBNLMS complexity, delay and memory are given, 
while in table 3.3 and figure 3.6 the BFDAF properties are shown as a 
function of the block length B for a filter length N = 4000. Also here the 
sudden step in 0, D. and ~is caused by the doubling of the FFT length 
M from 4096 (for B ~ 64) to 8192 (for B ~ 128). Compared to the time 

4 8 16 32 64 128 256 512 
4096 4096 4096 4096 4096 8192 8192 8192 

3 7 15 31 63 127 255 511 
80 80 80 80 80 80 80 176 176 176 

201 100 50.2 25.1 12.5 6.27 3.14 3.46 1.73 0.865 

16.4 16.4 16.4 16.4 16.4 16 16.5 33.0 33.3 33.8 

Table 3.2: Delay, complexity and memory of FBNLMS. 

B 1 2 4 8 1 64 128 256 
M 4096 4096 4096 4096 4096 8192 8192 
a 0 1 3 7 63 127 255 
D 80 80 80 80 80 176 176 
111 217 109 54.2 27.1 13.6 6.78 3.39 3.71 1.86 0.930 

(·toS) 
e 18.4 18.4 18.4 18.4 18.4 18.5 18.5 37.0 37.1 37.4 

(·103 ) 

Table 3.3: Delay, complexity and memory of BFDAF. 

doma.in adaptive algorithms of the previous chapter, that required at least 
8000 multiplications per sample, the BFDAF has a smaller computational 
complexity for a block length B > 27. 

3.5 Conclusions 

For large N and B it is known from literature [46, 30] that the BFDAF 
has good convergence properties for relative low computational complexity. 
However, when the processing delay is limited, low complexity can not 
he reached any more with the BFDAF approach. Besides that, the large 
FFTs imply a large computation processing delay, so if a small processing 
delay is required, BFDAF is not the right solution. These are the ma.in 
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motivations to derive partitioned structures, that will be treated in the 
following chapter. 



Chapter 4 

(Decoupled) Partitioned 
BFDAF 

For the realization of large adaptive filters the Block Frequency Domain 
Adaptive Filter {BFDAF), as described in the previous chapter, combines 
a relative low implementation complexity with good performance. On the 
other hand however the resulting processing delay of this algorithm is very 
large. For many practical situations (e.g. an acoustic echo canceller) this 
is unacceptable. On one hand a large filter length N is needed, while, on 
the other hand, only a very small processing delay can be tolerated. In 
the BFDAF algorithm the processing delay can only be reduced by using 
a small block length B, but this increases the computational complexity in 
such a way that the approach beoomes very inefficient. Besides that, the 
computation processing delay can not be reduced to an acceptable level, as 
the FFTs involved always have a length not smaller than the filter length 
N. 

By partitioning of the filter vector into smaller vectors, a small block 
length can be used, without a huge penalty in the computational complexity. 
This results in the Partitioned BFDAF {PBFDAF). Using smaller veetors 
and block lengths however also results in smaller Fourier transforma in the 
update part of the algorithm, thus implying a smaller decorrelation vector. 

By using a different partitioning in filter and update part of the al­
gorithm, we can make an independent choice for both the length of the 
decorrelation vector and the block length in the filter part of the algorithm. 
This results in the Decoupled PBFDAF (DPBFDAF}. By choosing larger 
Fourier transforma in the update part the computational complexity com­
pared to PBFDAF can also be reduced. 

75 
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4.1 Partitioning of Convolution 

4.1.1 Partitioning in Time Domain 

The block processing approach produces a length B vector ~8[KB] of output 
samples, that consists of B convolutions of N input signal samples with 
a :filter impulse response of length N. This :filter can he partitioned into 
smaller sub:filters oflength Q. Defining that 9F = fN/Ql,1 this partitioning 
in time domain can he described as follows 

~B[KB] (XN,B[KB])t. Jll.N 
= (XDF·Q,B[KB])t. wUF·Q 

UF-1 

= L (xQ•B[KB- iQ])t. Yl.iQ 
i=O 

in which the partitioning of the input-signal matrix is defined as 

XUF·Q,B[KB] = 
( xQ•B[KB ~ (g, -!)Q) ) 

xQ•8 [KB] 

xQ•8 [KB] = ( ~Q[KB- B + 1] · · · ~Q[KB] ) 

~Q[KB] ( x[KB- Q + 1] • • · x[KB] )t 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

The (fixed) :filter coeflicients are partitioned in an equivalent way, resulting 
in 

(4.6) 

with for 0 ~ i < 9F 

w? = ( Wie~HQ-1 • • . WiQ ) t. (4.7) 

This partitioning of the :filter vector is depicted in figure 4.1. 
1When NfQ is not an integer, the filter vector Yl.N is extended to alength rN/Ql·Q:::: 

!1F • Q vector by appending Q · r N /Ql - N coefficients equal to zero 

Yl.fJF·Q = ( !)_fJF~~-N ) 

= ( wfJF·Q-1 • • • wo )c. (4.1) 
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The 9F convolutions of equation ( 4.2) can now he computed separately by 
using an overlap-save method in frequency domain, as described in sub­
section 3.1.3. By choosing a DFT length M 2:: Q + B - 1 the resulting 
Partitioned Block Frequency Domain Convolution (PBFDC) can he de­
scribed as 

ÊM[,.;B] = 

where for 0 :5 i < 9F 

gp-1 

L Xfl[,.;B]®~M 
i=O 

(4.8) 

(4.10) 

(4.11) 

H we assume that Q I B = q is an integer, a simple delay line in frequency 
domain can he used for the veetors XiM[,.;B} with i > 0,2 since then for 
O<i<gF 

(4.13) 

The realization of equation ( 4.9) for integer Q I B is depicted in figure 4.2. 
In this figure each box "q~'"represents q one sample delay elements in 

2When Qf B is an integer, implying that the greatest common divisor of Q and B, 
gcd{Q, B}, equa.l.s B, only one FFT is needed. Otherwise we still can use a delayline, 
butweneed B/gcd{Q, B} FFTs (per B samples), by using (for Bfgcd{Q, B} ~i< gF) 

xr[~B] = x~B/gcd{Q,B}[(~- Qfgcd{Q, B})B]. (4.12) 

In the examples considered in this thesis, Qf Bis an integer. 
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x[k] 

ê[k-B+l] 

Figure 4.2: Partitioned BFDC. 
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series, each delaying over B · T seconds. The effect of this partitioning is 
that a part of the convolution is carried out in frequency domain, and a part 
in time domain. The factor Q can be chosen to minimize computational 
complexity, keeping in mind that increasing Q will increase M. A larger 
FFT length implies a larger computation processing delay. 

4.1.3 Properties of PBFDC 

With help of appendix A the next features of the Partitioned BFDC can 
be derived: 

• Algorithm processing delay 

.Ó.PBFDC = B- 1. (4.14) 

• Computation processing delay for FFT, IFFT and elementwise mul­
tiplication 

DPBFDC = 2 · DFFT{M} + D®{M}. (4.15) 

• Computational complexity: computation of FFT, IFFT and elemen­
twise multiplications 

.T. 2 · WFFT{M} + UF • w®{M} 
'J!PBFDC = B . ( 4.16) 

• Memory occupation: 

- Input delayline (Iength M), UF - 1 times q vector delays ( width 
M) and output samples (length B) 

- FFT inputfoutput (length M) 
- Twiddle factors (elements of :FM) (number < M) 

- Weight veetors !LM (UF times length M) 

0PBFDC ~ (3 + (UF- 1). (q + 1)). M + B. 

If Mis much smaller than N ,3 this can he approximated by 

0PBFDC ~ (2 + ~ + ~ - ~). (B + Q) + B 

1 
~ (2 + q +-) · N. 

q 

( 4.17) 

(4.18) 

3 Normally, M indeed is much smaller than N, as we try to rea.Iize large filters with 
small block lengtbs (and FFT lenghts). 
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4.1.4 Example of PBFDC 

Our exa.mple illustrates the relation between delay and complexity. In table 
4.1 and figure 4.3 the PBFDC complexity, delay and memory are given as a 
function of the block length B fora filter length N = 4000.4 The partition 
length Q is chosen to minimize the computational complexity. 

B 1 2 4 8 16 32 64 128 256 
Q 1 30 60 56 112 96 192 384 256 

1 15 15 7 7 3 3 3 1 
32 64 64 128 128 256 512 512 1024 
134 67 72 36 42 21 11 16 8 
1 3 7 15 31 63 127 255 511 
1 1 1 2 2 4 8 8 18 

4222 2209 

8.0 68.7 68.7 

Table 4.1: Delay and complexity and memory of PBFDC. 

Camparing these results to a time domain convolution, requiring 4000 
multplications per sample, we see that for a block length B > 2, the com­
plexity WPBFDC is smaller than 4000, which makes this PBFDC an atractive 
way of implementing convolution and correlation in adaptive filtering algo­
rithms. We observe that the a.mount of memory 0PBFDC depends strongly 
on the block length B in this case. This is caused by the fact that we 
chose to minimize the computational complexity, which implies that for 
decreasing B, the factor q = Q/B increases. Equation (4.18) shows that a 
mimimum for 0PBFDC is obtained when q = 1. 

4.2 Partitioning of the Update Part 

4.2.1 Starting Points in Time Domain 

The PBFDC can he used in adaptive filtering to perform the convolution. 
For the update part of an adaptive filtering algorithm we would also like 
to rednee computational complexity. Therefore we partition the update 
part into smaller parts, as was done with the filter part in the previous 
section. For the update part, we will use a block length A, a partition 
length Z, an FFT length L and a block index 1.5 In the BFDAF update 

4 For B = 1, the TDC is the "optimal" PFDC. Of course, no FFT is carried out then! 
5 As the block index is a.n integer, the time instanee lA is a. multiple of A. 
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part one out of two time domain algorithms, BOP and BRLS, was chosen 
as basis, depending on the choice of the block length B and the filter length 
N. Also here two starting points can be used, the BOP algorithm and the 
DBOP algorithm. When the block length A is larger than Z, BOP is used 
(compare toB larger than N in the BFDAF case). On the other hand, 
if the partition length Z is larger than the block length A, DBOP is used 
as basis (compare toN larger than B in the BFDAF case). Like in the 
BFDAF case, also here the result of both approaches will be the same. 

4.2.2 BOP as Basis 

First a BOP update equation (2.49) with block length A, is partitioned in 
Yu = fN/Zl parts6 

( 4.19) 

and each of these parts is implemented efficiently in frequency domain. 
The partitioned BOP update equation parts, that can be extracted from 
equation (4.19), are given for 0 ~i< 9u by 

with 

Jl[ZA] = 2a('k.:[lA])-1t:A[lA] 

xZ,A[lA] = ( ~Z[lA- A+ 1] · · ·~Z[lA] ) 

~z[lA] = ( x[lA- Z + 1] · · · x[lA] )t 

and for 0 ~ i < 9u 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

6 When NI z is not an integer' the filter vector 'J!!.N is extended to a length r NI Zl· z = 
gu . z vector by appending z . r NI Zl - N coefficients that are kept zero, as was done in 
the filter part. Note that gu · Z is not necessarily equal to 9F · Q. As long as they are 
both notsmaller than N, this is no problem (as we will see later on). 
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Choosing the FFT length L 2: Z +A -1, an equivalent procedure as used 
in chapter 3 (with BOP as basis) can he used to approximate equations 
( 4.20) and ( 4.21 ). The e:fficient frequency domain normalization is given by 

yL[lA] = 2a(~[lA])-1 ® RL[lA] (4.25) 

while the update equations (4.20) are transformed for 0::; i< Yu to 

wf[(l + l)A] = wf[lA] + ( JZ oZ,L-Z ) . (FM)-1 

·((Xf[tA])* ® yL[lA]). ( 4.26) 

with for 0 ::; i < Yu 
(4.27) 

and 

( 4.28) 

4.2.3 DBOP as Basis 

If Z is larger than A, then the DBOP update equation (2.65) with auto­
correlation matrix dimension z' is partitioned in Yu = r NI Z] parts 7 

( 
w:u-1[\l + l)A] ) = ( w:U~t[lA] ) 

.YZl[(l + l)A] .YZl[lA] 

( 

('k.! [lA])-1 
• xz,A[lA- (gu - 1) · Z] ) 

+ 2a ; · .rA[lAJ, (4.29) 

('Ji![lA])-1 • XZ,A[lAJ 

and each of these parts is implemented efliciently in frequency domain. 
The partitioned BOP update equation parts, that can he extracted from 
equation ( 4.29), are given for 0 ::; i < Yu by 

wf[(l + l)A] = wf[lA] + 2a('k![lAJ)-1 
• xf•A[lA] · .rA[lA]. (4.30) 

An equivalent procedure as used in chapter 3 (with BRLS as basis)8 can he 
used to approximate this equation. Like in chapter 3 also here the result 

7When N/Z is not an integer, l!lN[k] is extended like in the case where BOP is used 
as basis. 

8The partition length Z equa.ls the dimension of the inverse autocorrelation matrix in 
partitioned DBOP, while in BRLS the filter length N equa.ls the dimension of the inverse 
autocorrelation matrix. By replacing Z by N, A by B and lA by kB both a.lgorithms 
are equa.l. 
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is equal to the result of the approach with BOP as basis (see previous 
subsection). 

4.2.4 FD lmplementation of Update Part 

For an e:fficient implementation, the input signal FFTs can he combined 
like in the filter part. lf we assume that Z/A = z is an integer, a simple 
delay line in frequency domain ean he used for the veetors X f[lA] defined 
in equation ( 4.27), with i > 0,9 since then for 0 < i < Uu 

xf[lA] = xt_1 [(l- z)A]. (4.32) 

To keep the number of FFTs as small as possible, in most cases Z /A is 
an integer, which yields the partitioned update part depieted in figure 4.4. 
In this figure each box "kl""represents a one sample delay delaying over 
A· T seeonds ("zkl11

" depiets z of those in series). In the following sec­
tions two methods are described to eouple the partitioned update part to 
a partitioned filter part. 

4.3 Partitioned BFDAF 

4.3.1 PBFDAF Algorithm 

The easiest way to eouple the partitioned filter and update part is by 
choosing the partition parameters equal. This ean he achieved by choosing 
Z = Q, A = B, L = M and thus 9F = 9u· As we try to obtain efficient 
realizations of low delay adaptive filters, we will assume that Q / B = q is 
an integer, thus requiring only one input signal FFT.10 If the eonjugation 
operator is moved, then the update part of the algorithm can use the de­
layline of the filter part, asthen the veetors J:k[lA] to X~1z_1 [lA] of figure 
4.4 are equivalent to the veetors used in the delay line of figure 4.2. 

The result is the Partitioned Bloek Frequency Domain Adaptive Filter 
(PBFDAF) [13, 46] (a generalization of the Multi Step Size (MSS) Fre­
queney Domain Adaptive Filter in [49]). The result is depieted in figures 4.5 
and 4.6. 

9 When Z/A is a.n integer, implying tha.t the grea.test common divisor of Z a.nd A, 
gcd { Z, A}, equa.ls A, only one FFT is needed. Otherwise we still ca.n use a. dela.yline, but 
we.need A/gcd{Z,A} FFTs (per A samples), by using (for A/gcd{Z,A} :5 i< gu) 

Xf[lA] = Xf-A/gcd{Z,A}[(l- Zfgcd{Z,A})AJ. (4.31) 

In the exa.mples considered in this thesis Z =A, so Z/A is a.n integer. 
10This also mea.ns tha.t DBOP is a.lwa.ys the basis! 
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x[k] 

(Xk[lA])* 

z z z 

l!!f[lA] ~[lA] 

Figure 4.4: Partitioned update part. 
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ë[k] 

Figure 4.5: Partitioned BFDAF. 
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Xf/[~BJ 

Wf/[~B] 

Figure 4.6: Updateblockof PBFDAF. 
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4.3.2 Properties of PBFDAF 

With help of the properties of the PBFDC and BFDAF the following prop­
erties for the PBFDAF can he derived: 

. • Algorithm processing delay 

~PBFDAF = B - 1. (4.33) 

• Computation processing delay for FFT, IFFT and elementwise mul­
tiplication 

(4.34) 

• Computationa] complexity: computation of FFTs, elementwise mul­
tiplications and decorrelation 

,y, (3 + 2gF). q;FFT{M} + 2gF. 'li'~dM} + Wp{M} 
~PBFDAF = B . 

(4.35) 

• Memory occupation: 

- Input delayline (length M), 9F- 1 times q vector delays (width 
M) and output samples (length B) 

- FFT inputfoutput (length M) 

- Twiddle factors (elements of FM) (numher < M) 

- Weight veetors w~ (gF times length M) 

- Decorrelation (length M /2) 

If M is much smaller than N, 11 this can he approximated hy 

1 
0PBFDAF ~ ( 2 + q + -) . N. 

q 

11 See the remarksin conneetion with equation (4.18). 

(4.36) 

(4.37) 
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4.3.3 Convergence and Tracking 

The PBFDAF algorithm behaves like a (D)BOP algorithm with autocorre~ 
lation matrix dimension max{Q,B}. When the input signal can be decor~ 
related with its inverse autocorrelation matrix of order max{ Q, B}, the 
PBFDAF algorithm behaves ( approximately) as a BFDAF algorithm with 
an equal block length (see subsection 3.3.5). lf Q is in the order of B (say 
B < 3Q < 9B) then the approximation error can influencè the decorrela~ 
tion properties, depending on the input signal autocorrelation vector. 

Like in the FBNLMS and BFDAF case (subsections 3.2.3 and 3.3.5), 
one could also try to use an unconstrained approach here, which means 
that we can skip 2gp FFTs. As the filterpartslink up to one another, the 
circular nature of the frequency domain convolution, no longer cancelled by 
a time domain windowing operation, will cause a coupling of the coefficients 
from one subfilter to the next ( the length of the unknown system is not 
smaller than Q). The adaptive filter algorithm then no Jonger converges 
to the Wiener solution [31]. This causes large degradation in convergence 
behaviour or even divergence of the adaptive filter coefficients. 

4.3.4 Example of PBFDAF 

Our example illustrates the relation between delay and complexity. In table 
4.2 and figure 4. 7 the PBFDAF complexity, delay and memory are given 
as a function of the block length B for a filter length N = 4000.12 The 
partition length Q is chosen in such a way that the complexity is mini~ 
mized. Complexity of PBFDAF is much reduced compared to BFDAF 

B 1 2 4 8 16 32 64 128 256 512 
Q 1 2 12 24 48 96 192 384 768 512 
q 1 1 3 3 3 3 3 3 3 -du M 1 4 16 32 64 128 256 512 1024 

9F 4000 2000 334 167 84 42 21 11 6 8 
i1 0 1 3 7 15 31 63 127 255 511 
D 1 1 1 1 1 2 4 8 18 18 
w 8005 12010 8382 5470 3434 2086 1253 792 532 338 
e 8.0 16.0 21.4 21.5 21.7 21.9 22.2 23:;- 27.4 19.5 

(·103) 

Table 4.2: Delay, complexity and memory of PBFDAF. 

( and certainly compared to the time domain algorithms ). For very small 
12For B = 1, the NLMS algorithm is the "optimal" PBFDAF. Of course, no FFT is 

ca.rried out then! 
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Figure 4.7: Properties of PBFDAF. 



4.4. DECOUPLED PBFDAF 91 

delays, like the 0.5 milli~seconds of our example, we still need a huge com­
plexity (approximately equal to the complexity needed in the (simplest) 
time domain case (LMS)). 

4.4 Decoupled PBFDAF 

4.4.1 DPBFDAF Algorithm 

When choosing the partition lengths of both the filter and update part 
different we are able to realize an e:fficient overall implementation with on 
one hand a given minimal allowable processing delay (by choosing B small) 
and on the other hand a large decorrelation dimension (by choosing large Z 
and A). The result is the Decoupled Partitioned Block Frequency Domain 
Adaptive Filter (DPBFDAF) [16]. The filter part of DPBFDAF is depicted 
in figure 4.8. 

To create one algorithm from the filter part of figure 4.8 and the update 
part of figure 4.4 we have to define two interfaces between this filter and 
the update part: one to conneet the adaptive weight vect~rs and the other 
one to conneet the residual signal vectors. 

For the interface that connects the adaptive weight veetors it is noted 
that it is not useful to compute the weights more often than they are 
needed. For this reason we assume A ~ B. For simplicity reasons we will 
take A as an integer multiple of B, with 1 = A/B = rA/Bl- Conneetion 
is established by first merging the separate veetors of the update part into 
one filter vector, and, after that, partitioning this filter vector again into 
parts of length Q. These veetors can be transformed to frequency domain. 
This is depicted in figure 4.9 and can be expressed as follows 

(4.38) 

The "Hold" boxes in figure 4.9 perform the upsampling operation from the 
lower update part sample rate (1/(A · T)) to the higher filter part sample 
rate (1/(B · T)), by defining its output vector as its most recent input 
vector (which means that 1 copies of each input vector are put out before 
a new input vector is offered to the "Hold" box). Note that the frequency 
domain transformation takes place before the hold operation. This way the 
FFTs are perfomed at the lowest possible sample rate. In equation ( 4.38) 
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x[k] 

l:B [ t;;B] t=:==::::;-;::::==::::::;-J 
ê[k] 

r[k-B+l] 

Figure 4.8: Filter part of DPBFDAF. 
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the FFTs are not incorporated to keep the "Compose and Split" operation 
clearly visible.13 

w:u-t[l~JA] wf[l~JA] ,ml[l~JA] 

z z z 
Compose and Split 

Figure 4.9: Interface for adaptive weight coefficients. 

For the second interface, that connects the residual signal vector, we 
note that the filter part generates veetors .r8 [~~:B]. These veetors contain B 

13If guZ =F fJFQ, andfor Nis smaller than guZ or UFQ, the filter and update part can 
still be connected (see also footnotes at page 76 and 82). We therefore have to divide 
the "Compose and Split" operation in "Compose" and "Split" operations. The first one 
camposes .YZN[L~ehJA] by 

( 

.!!~-t[l~JA] ) 
.!!NU"hJA] = ( 0N,f1Uz-N 1N ) • : 

~[l~JA] 

(4.39) 

while the second one splits an extension by zerosof .!!N[lnhJA] by 

(4.40) 

In figure 4.10 equations ( 4.39) and ( 4.40) are depicted. 
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w;u-t[l~JA) wf[l~JA) ~[l~JA] 

z z z 
Campose 

9uZ-N 
N 

fl/FQ-N _mN[l~JA] 

9FQ-N 

Split 

Q Q Q 

w~F-l[l~JA] w~[l~JA] ~[l~JA] 

Figure 4.10: Campose and Split in detail. 

samples at a rate i:T· Since A/ B =i is assumed to he an integer, we can 
put i afthese residual signal vecors in a delay line, upto a length A vector. 
Sample rate rednetion with a factor i = A/ B finally yields .z:A[lA] 

A ( .z:B[(li-: + 1). B] ) 
1: [lA]= : . 

l:B[l;. B] 
(4.41) 

This is depicted in tigure 4.11. 

4.4.2 Properties of DPBFDAF 

With help of the properties of the PBFDC and PBFDAF the following 
properties for the DPBFDAF can he derived: 

• Algorithm processing delay 

ÀDPBFDAF = B - 1. (4.42) 

• Computation processing delay for FFT, IFFT and elementwise mul­
tiplication 

DnPBFDAF = 2 · DFFT{M} + D®{M}. (4.43) 
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Figure 4.11: Interface for residual signal. 

• Computational complexity: computation of FFTs, elementwise mul­
tiplications and decorrelation 

,y, 2. q;FFT{M} +OF. \lf®{M} 
~DPBFDAF = B (4.44) 

OF· q;FFT{M} + (2 +Ou)· 'lfFFT{L} +Ou· 'lf®{L} + \lfp{L} 
+ A . 

• Memory occupation: 

- Input delaylines (length M and L ), OF - 1 times q vector delays 
(width M), nu- 1 times z vector delays (width L) and output 
samples (length B +A) 

- FFT inputfoutput (length Mand L) 
- Twiddle factors (elements of :FM and :FL) (number < M + L) 
- Weight veetors ~M and wN (gF times length M and length N) 

- Decorrelation (length L/2) 

0oPBFDAF ~ (3 +(OF -1) · (q + 1)) · M + B +A+ N 
7 

+(2 +(nu- 1) · z) · L. (4.45) 

lf M is much smaller than N, 14 and Z = A, 15 this can he approxi­
mated by 

1 
0oPBFDAF ~ ( 5 + q + -) · N + 6 · A. 

q 

14 See the remarksin conneetion with equa.tion (4.18). 
15 For every case considered in this thesis, this is true. 

( 4.46) 
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4.4.3 Convergence and Tracking 

Now the value of the update part parameters A a.nd Z can be chosen 
large enough to ensure that the input signa.l can be decorrelated with a.n 
autocorrelation matrix of order A (see chapter 6), and that the inter block 
correlation ca.n be neglected (see subsection 2.5.4). 

In order to rednee computationa.l complexity, we would like to choose 
the block length A in the order of N. The use of DPBFDAF implies that 
the power vector is updated only once every A samples, and that the update 
a.lso takes place only once every A samples. The latter means that tracking 
properties are much worsened (see 2.3.3), a.nd the farmer means that we 
may not be able to follow non-stationarities in the input signa.l. Especially 
in cases where speech signa.ls are used, like in the Acoustic Echo Cancelier, 
this means that normalization is ofno use anymore (see chapter 8). This all 
induces a maximum on the block length A, which implies a certa.in minimal 
computationa.l complexity. 

In the Decanpled a.lgorithm thus still another coupling exists: the di­
mension a.nd rate of the normalization vector are coupled to the update 
part parameters (FFT length and block length). In chapter 6 a methad 
to decouple the direension of the normalization vector from the update 
part parameters is discussed. This makes it possible to enlarge A without 
influencing the normalization properties. 

4.4.4 Example of DPBFDAF 

Our example illustrates the relation between delay a.nd complexity. In table 
4.3 a.nd figure 4.12 the DPBFDAF complexity, delay and memory are given 
as a function of the block length B for a filter length N = 4000.16 The 
partition length Q is chosen in such a way that the complexity is minimized. 
For all DPBFDAF examples, the update part parameters are equa.l, with 
A = Z = 512,17 L = 1024 a.nd Yu = 8. Complexity of DPBFDAF is 
much red u eed compared to PBFDAF ( a.nd certa.inly compared to BFDAF 
and the time doma.in a.lgorithms). For very small delays, like the 0.5 milli­
seconds of our example, we still need a huge complexity. In the example, 
for B = 4, the implementation requires 2414 multiplications per sample, 
equa.l to 19.3 million multiplications per second. 

We abserve that the amount of memory 9nPBFDAF depends strongly on 

16 For B = 1, the DPBFDAF uses a. TDC a.s "optimal" PFDC. Of course, no FFT is 
ca.rried out then! 

11This implies tha.t for B = Q = 512, PBFDAF a.nd DPBFDAF are equal. 
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B 1 2 4 8 16 32 ~128 256 
Q 1 30 60 56 112 96 384 768 
q 1 15 15 7 7 3 3 3 
M 1 32 64 64 128 128 256 512 1024 
9F 4000 134 67 72 36 42 21 11 6 
tJ. 0 1 3 7 15 31 63 127 255 
D 1 1 1 1 2 2 4 8 18 
q; 4180 4420 2414 1391 852 588 440 382 368 
e 19.4 84.0 84.1 52.4 52.5 37.2 37.4 39.0 42.2 

(·Io3) 

Table 4.3: Delay, complexity and memory of DPBFDAF. 
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Figure 4.12: Properties of DPBFDAF. 
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the block length B in this case. This is ca.used by the fa.ct tha.t we chose to 
minimize the computa.tional complexity, which implies that for decreasing 
B, the factor q = Q / B increases. At cost of a. slightly la.rger computational 
complexity, 0oPBFDAF ca.n be reduced considerably. If we look at the 
example ( B = 4 ), we ca.n choose Q = 12, then tloPBFDAF = 2711 ( a.n 
increase by a factor 1.12) a.nd E>oPBFDAF = 36.8 · lOl (a decrease by a. 
factor 2.29). 

4.5 Conclusions 

When a small processing delay is needed, the PBFDAF requires a. lower 
computational complexity than the BFDAF at cost of a. smaller decorrela­
tion dimension. To gaîn the same decorrelation dirneusion as the BFDAF 
with a small processing delay a.nd a computational complexity that is even 
lower than with the PBFDAF, the DPBFDAF is a good solution. However, 
even the DPBFDAF often has a computational complexity tha.t is too high 
for real-time implementation purposes, especially when non-stationarity of 
the input signa.! is the main problem. In the next section we will introduce 
a. metbod for further complexity rednetion by non-uniform partitioning of 
the convolution. 



Chapter 5 

Non-Uniform Partitioned 
BFDAF 

For the realization of large adaptive filters the Block Frequency Domain 
Adaptive Filter (BFD_AF), as described in chapter 3, combines a relative 
low implementation complexity with good convergence behaviour. On the 
other hand however the resu.lting processing delay of this algorithm is very 
large cau.sed by the length of the FFTs involved. 

By partitioning of the filter vector into smaller veetors a small block 
length can be used without a huge penalty in the computational complexity. 
This results in the Partitioned BFDAF (PBFDAF). By using a different 
partition length in the filter and in the update part of the algorithm, we can 
make an independent choice for both the block length in the filter part and 
the decorrelation vector length in the update part. The result is the Decou­
pled PBFDAF (DPBFDAF), with an even lower computational complexity 
than PBFDAF. 

However, the computational complexity of the filter part still is quite 
large in DPBFDAF, and in fact determines the overall complexity. Insome 
applications (such as the Acoustic Echo Cancelier) the resulting computa­
tional complexity of the whole algorithm still is very large. Therefore a 
new algorithm for frequency domain convolu.tion is introdu.ced, that uses a 
non-uniform partitioning of thefilter (into sub-filters). This Non-Uniform 
Partitioned BFDC (NUPBFDC) can be used in adaptive filtering, resulting 
in the Non-Uniform Partitioned BFDAF (NUPBFDAF). 

99 
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5.1 Non-Uniform Partitioning of Convolution 

5.1.1 Information in Delayline 

To reduce computational complexity, a filter can be partitioned into several 
sub-filters of equallength Q that are individually transformed to frequency 
domain, as was shown in the previous chapter. This uniform partitioning is 
described by the following equation ( compare to the block-based equation 
(4.2)) 

YF-1 

ê[k] = 'E (~Q[k- iQ])t · w~ 
i=O 

YF-1 

= 2.: êi[kl 
i=O 

(5.1) 

with 9F = r NI Ql1 The partitioning is given in equations ( 4.4) and ( 4. 7) 
and figure 4.1. The above (uniform) Partitioned Time Domain Convolu­
tion (Partitioned TDC) is depicted in figure 5.1. The boxes "Qt::.." denote 
a delay over Q samples, while the boxes "w~" are used for the filtering 
(convolution) operation. In figure 5.1 we see that the i'th sub-filter (with 

x[k] 

êo[k] 

- -- - ------i - - - - -----l 

ê[k] 

Figure 5.1: (Uniform) Partitioned Time Domain Convolution. 

filter vector YLïQ) needs an input signal that is delayed over iQ samples. 

1If !/F. Q > N, then Jl!.N is extended to Jl!.Q·rN/Ql by appending Q. rN/Ql - N 
coefficients (that equal zero). 
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This mea.ns that the calculation of êi[k] ca.n be started iQ samples earlier, 
as shown in tigure 5.2. 

x[k] 

êo[k] 

ê[k] 

Figure 5.2: Moving the delayline in (Uniform) Partitioned TDC. 

The resulting delays can be used to compensate for the algorithm pro­
cessing delay induced by a block processing approach. For the i'th sub-filter 
we ca.n increase the block length by iQ compared to the O'th subfilter block 
length, without extra algorithm processing delay. Realizing sub-filters .with 
a different block length implies that we ca.nnot use a delay-line in frequency 
domain fortheinput signal veetors (as in the previous chapter ). This mea.ns 
that we eau as well choose a non-uniform partitioning of the filter ( using 
several different partition lengths) to minimize computational complexity 
[17]. 

5.1.2 Non-Uniform TD Partitioning 

Here we introduce a new approach to partition the filter into sub-filters of 
not necessarily equallength. The goal is to rednee computational complex­
ity by using a larger filter length where a larger block length is possible. In 
tigure 5.3 this non-uniform partitioning of the filter vector is depicted. The 
application of this non-uniform partitioning to a convolution is depicted in 
tigure 5.4 (compare to tigure 5.1), and can bedescribed by 

G-1 

ê[k] = L(~Si+t-SJ[k _ S;])t. w:i+t-si 
j=O 
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Sa-1 

S· 3 

i i i 

Figure 5.3: Non-uniform partitioning of coe:fficient vector. 

G-1 

= I: êj[k], 
j=O 

where So = 0 and Sa;;:: N.2 

êo[k] 

---------( 

ê[k] 

Figure 5.4: Non-uniform partitioned TDC. 

t 
wo 

(5.2) 

x[k] 

In the uniform partitioned case all sub-filters where realized with the 
same block and partition length, which implies that every sub-filter has 
the same computation (and algorithm) processing delay. This does, in 
genera!, .not apply to the case of non-uniform partitioning, so we have 

2If Sa > N then, like in the uniform partitioned case, Yl.N is extended to Yl.sa by 
appending Sa- N coefficients (that equal zero). 
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to take bath the computation and algorithm processing delay into account 
while developing the non-uniform partitioned algorithm. Assuming that the 
maximum allowable processing delay ( sum of algorithm and computation 
delay) is Dmax samples, the j'th sub-filter has Dmax + Sj sample intervals 
available for its algorithm and computation processing delay, as shown in 
figure 5.5. lf we assume that the computation processing delay for the j'th 

...----- - - -- -- x[kJ 

ê[k- Dmax] 

Figure 5.5: Non-uniform partitioned TDC with maximum delay. 

sub-filter equals Dj, we have Dmax + S;- D; delays left for the algorithm 
processing delay.3 

To minimize computational complexity, every ê;[k] of equation (5.2) will 
he calculated with a PBFDC, which implies the use of G different partition 
lengths Q; and block lengths B; (with for 1 ~ j < G: B; > B;_l). The 
computation of ê;[k] with such a PBFDC induces an algorithm processing 
delay of Bj - 1 samples. lf we de:fine Tj as 

Tj = Dmax + S; - B; + 1, (5.3) 

and subtract the algorithm delay B; -1 from Dmax + Sj- D;, we see that 
Tj- D; delays are left over4 as depîcted in :figure 5.6. 

3 Whlle estimating the computation processing delay Di for each sub-filter, one has 
to realize that an implementation on a single DSP implies that we cannot compute the 
sub-filters in parallel. If we assume tha.t the order of the computation of the sub-filters 
is such that the smaller indexed filters are calculated as late as possible, the Dj can be 
estimated recnrsively, by starting with Do, as only the parameters of sub-filters with an 
index smaller than j will infiuence the value of Dj. 

4 From Tj weneed Di delays to compensa.te for the computation processing dela.y. 
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ê[k- Dmax] 

Figure 5.6: Non-uniform partitioned TDC, prepared for FD transformation. 
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The PBFDC partitions for all j, with 0 $ j < G, the j'th subfilter of 
length S;+t-Si into 9i smaller subfilters oflength Q;, implying that for all 
j, with 0 $ j < G: S;+t-S; = g;-Q;.5 The non-uniform partitioning ofthe 
coefficient vector is depicted in figure 5. 7, and the non-uniform partioned 
convolution is described as 

G-lUJ-1 

ê[k] = I: L (~Qi[k- S;- i· Q;])t · wJ.f 
i=O i=O 

G-1 

= I: ê;[kl (5.4) 
j=O 

with for 0 $ j < G 
grt 

êj[k] = L (~Qi[k- S;- i. Q;])t · wJ./ 
i=O 
j-1 

S; = L9a ·Qa 
a=O 

~Qi[k] = ( x[k- Qi + 1] . . . x[k] )t 

and for 0 $ j < G with 0 $ i < 9i 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

To obta.in a causal realization, for all j, with 0 $ j < G, the number of 
delays r;- D; that is leftover must he non-negative. This means that the 
next set of conditions must be fulfilled for 0 $ j < G 

0 s Tj -D; 

<=> B; s Dmax- D; + 1 + S; 
j-1 

<=> B; < Dmax- D; + 1 + L9a ·Qa. (5.9) 
a=O 

The j'th block length B; is determined by the partition lengtbs of the sub­
filters witb a smaller index. 6 B0 is bound to Dmax- Do+ 1. Tbe otber block 
lengtbs can he cbosen (much) larger to minimize computational complexity. 

5It is a.ssumed tha.t for a.ll 0 5 j < G, the Sj where chosen such tha.t (Si+l - SJ)fQJ 
is a.n integer. 

6This mea.ns tha.t besides the computa.tion processing delays Dj, a.lso the block lengtbs 
Bj, tbe pa.rtition lengtbs Qi a.nd the number of sub-filters gi ca.n he chosen recursively. 
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QG-1 

t 
wsa-1 

i 1· .. 1 

QG-1 

Qa-1 
WG-1,0 

Figure 5.7: Non-uniform partitioning of coefficient vector. 

5.1.3 Block-based TDC 

To prepare a transformation to frequency domain, equations 5.6 are written 
on block basis. For all j, with 0 :5 j < G, the last Bj samples of êj[k] are 

collected in one block ~f'[ll:jB;], whose computation is assumed to finish 
at time instanee ll:jBj (ll:j denotes the block index of the j'th subfilter). To 
obtain a processing delay of Dma.x samples, êj[ll:jBj- Dmax] has to he the 
first element of ~fi[ll:jBj], implying that for 0 :5 j < G 

(5.10) 

where 

(5.11) 

Note that if there is only one partition factor ( G = 1 ), then Dma.x = 
Do+ Bo- 1, which implies that ro = Do. Comparing equations (5.10) 
to the PBFDC equations ( 4.2), we see that incorporating the computation 
processing delay causes a shift in the input signal matrix of Do samples in 
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equation (5.10) (therefore we can start computation Do samples earlier). 
This computation delay has to he incorporated in the equations because the 
results of all hlock equations ( when G > 1 ), ha ving a different computation 
delay, must he added in the end. 

5.1.4 Non-Uniform Partitioned BFDC 

Now we can transform all block-equations to frequency domain with the 
help of Discrete Fourier Transforma (DFT's) ( or more efficiently Fast Fourier 
Transforma (FFT'a)) using an overlap save method like in the PBFDC 
case of the previous chapter, with the Fourier Transform lengtha Mi ;?::: 

Bi+ Q; -1. For every different partition factor one FFT and one IFFT is 
needed. For 0 ::;; j < G this is denoted as 

~:i[K;B;] = ( oB;,M;-B1 JB; ) . (:FMi)-1 

g;-1 

· "'(xl;li[,ç3·B3·] ® W~1 ) L...J -J,I -'),l 
(5.12) 

i=O 

(5.13) 

(5.14) 

lf we assume that Q;/ Bi = q; is integer (if Ui > 1),7 then also here delay­
lines can be used for equation (5.15),8 as for 0 :s; j < G and 1 :s; i < Ui 

X M;[.,.·B·]- XM; [( .... - Qi) ·B·] 
-j,i HJ J - -j,i-1 "'3 B· J • 

J 
(5.15) 

The algorithm of equations (5.12), (5.14) and (5.15) is depicted in fig­
ure 5.8. The input aignal to this Suhfil;-block is JfMi[K;B; - Tj]· The 
output signal is ~:i[K;B;]. The filter veetors w::t till w::;1_1 are fixed 
vectors. The hoxes "q;fl.'" repreaent q; one-aample vector delays, where a 
one-sample delay here means a delay over B; · T seconds. The whole filter 
operation ( convolution) according to equation ( 5.4) is depicted in figures. 

7If Ui = 1, then the j'th PBFDC in fact is a BFDC, so no dela.yline is needed. 
8When Q;/B; is integer, implying tha.t the greatest common divisor of Qj and B;, 

gcd{ Q;, B; }, equals B;, only one FFT is needed. Otherwise we still can use a delayline, 
butweneed B;/gcd{Q;,Bj} FFTs (per Bi samples) (see equation (4.12)). 



108 CHAPTER 5. NON-UNIFORM PARTITIONED BFDAF 

5.9 and 5.8. The box es "rp!::t." are Tj one-sample delays, each one-sample 
delay delaying over T seconds. The parameter G, and all parameters Q i, 
Bj, Di and Mj can he chosen within the conditions of inequalities (5.9) to 
minimize computational complexity. 

M· 3 

+ 

Figure 5.8: Subfilter Subfilj. 

5.1.5 Properties of NUPBFDC 

Mi 

M· 
Xj,Ó[KjBj] 

M· 3 

The next features of the Non-Uniform PBFDC are derived with help of the 
PBFDC properties and appendix A: 

• Algorithm and computation processing delay 

LlNUPBFDC + DNUPBFDC :::; Dmax. (5.16) 
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Figure 5.9: Non-Uniform PBFDC. 
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• Computational complexity: FFTs, IFFTs, elementwise multplica­
tions: 

'lliNUPBFDC 

G-1 

= L q;NUPBFDC,j 
j=O 

'lliNUPBFDC,j = 2 · 'lliFFT{Mj} + 9j · 'lli"®{M;} 
B; 

• Memory occupation ( compare to PBFDC) 

G-1 

eNuPsFoc ~ 2:::<<3 +(u;- 1) · (qj + 1)) · M; + B;). 
j=O 

(5.17) 

(5.18) 

(5.19) 

If for all j, 0 5 j < G, Mj is much smaller than N,9 this can he 
approximated by 

(5.20) 

5.1.6 Example of NUPBFDC 

The example illustrates the relation between delay and complexity. In table 
5.1 and figure 5.10 the NUPBFDC complexity, delay and memory are given 
as a function of the block length B0 ( determining the algorithm processing 
delay) for a filter length N = 4000. The number of different partition 
factors and for all j, 0 5 j < G, the parameters B;, Q;, Ui and M; (except 
for Bo) are chosen to minimize the complexity 'lliNUPBFDC· 

Bo 1 2 4 8 16 32 64 128 256 512 
~+D 1 2 4 8 16 32 65 131 263 529 

G 6 5 5 4 3 3 2 2 2 1 
ili' 142 141 138 132 128 116 103 92 84 60 
e 22.0 zz:o 22.0 21.9 19.6 21.8 19.3 19.6 22.8 18.9 (·103) 

Table 5.1: Delay, complexity and memory of NUPBFDC. 

For the NUPBFDC the maximum allowable processing delay of 0.5 
milli-seconds results in Drnax = 0.5 · 10-3 • Is = 4. In tables 5.2 and 5.3 

9 In the cases considered in this thesis, even the largest FFT length MG-1 is at most 
N/4, see also the remarksin conneetion with equation (4.18). 
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Figure 5.10: Properties of NUPBFDC. 
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the complexity 'IINUPBFDC is given as a function of the number of different 
partition factorsGin this case. For all j, 0 ~ j < G, the parameters Bj, 
Q;, 9j and Mj are chosen to minimize the complexity 'IINUPBFDC· From 

PBFDC 

64 
67 

2209 
PBFDC 1.00 9.67 14.3 q, 

Table 5.2: Complexity using 1 to 3 partition factors. 

Algorithm 
#part. fac. G 
Subset index j 

Block length B · 
Part. length Q · 
FFT length M · 
# subfilters 9j 

'IINUPBFDC 
PBFDC 

ili 

NUPBFDC 
4 5 

2 3 
32 128 
32 128 
64 256 
4 3 

140 138 
15.7 16.0 

Table 5.3: Complexity using 4 or 5 partition factors. 

4 
512 
512 
1024 

7 

table 5.3 it can be seen that the number of real multiplications per sample 
can be reduced by a factor 16 compared toa uniform partitioned frequency 
domain convolution for this example. A further increase in the number 
of different sub-filter lengths G does not increase 'IIraFoc/'IINuPBFDC any 
more. 

The maximum of WPBFDc/'IINUPBFDC depends strongly on the value of 
Dma.x and N. In figure 5.11 this dependency is depicted for different N while 
Dma.x is varied between 1 and N. This figure shows that for Dmax < N /8 the 
introduced non-uniform partitioning concept is very usefull. Finally from 
figure 5.12, where the computational complexity WNUPBFDC is depicted 
as function of Dmax and N, it follows that an increase of the number of 
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filter coefficients N by a factor 4 cost approximately 40 real multiplies per 
sample, independent of N and Dmax· 
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Figure 5.11: Complexity gain of NUPBFDC over PBFDC. 

5.2 Non-Uniform Partitioned BFDAF 

5.2.1 Filter part for NUPBFDAF 

·The filter part ofthe Non-Uniform PBFDAF (NUPBFDAF) adaptive filter 
is constructed according to the NUPBFDC method introduced in the pre­
vions section. However, the coefficients of the filter are not fixed but have 
to be adapted. If we assume that all block lengths Bj with 0 < j <Gare 
integer multiples of Bo, then the residual signal is constructed as follows 

= f_B0 [~>:oBo]- ~B0 [KoBo] (5.21) 

( 

ë[KQBo - Dmax] ) 

= ë[~>:oBo- ;~ + Bo - l] 
(5.22) 

= ( ê[ KoBo - Dmax] ) 

ê[~>:oBo- Dma.x + Bo -1] 
(5.23) 
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Figure 5.12: Complexity of NUPBFDC. 

In figure 5.13 the above equations are combined with the NUPBFDC. 
The subfilters can he found in figure 5.8. The parallel to parallel couverters 
( denoted by "P /P") are needed for conversion from one sample rate and 
block length to another. The change in block length is performed by split­
ting each block oflength B; (that arrives every B; ·T seconds) into B;/Bo 
blocks of length Bo. The time between two blocks is decreased to B0 • T 
seconds, so all blocks of length Bo can be transmitted before the new block 
of length Bj arrives. Mathemathically this combination to blocks of length 
B0 can he described as 

where for 0 ~ j < G 

G-1 

fB0 [KoBo] = L ff0 [KoBo] 
j=O 

ff[KoBo] = ( oBo,Oj[KOBo] lBo oBo,Bj-Bo-Oj["''Bo] ) 

(5.24) 

·ff1[L K~o JBJ] (5.25) 
J 

with the position of the window defined by !l;[KoBo] 

KoBo 
!l;[KoBo] = KoBo- l ~ J · B; 

J 
(5.26) 
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Figure 5.13: Filter part for NUPBFDAF. 
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5.2.2 Update part for NUPBFDAF 

The update rate for the adaptive coefficients is chosen in such a way that 
all filter part rates are integer multiples of the update rate, which implies 
that the update part block length A is an integer multiple of the largest 
filter part block length Ba-t· A modified version ofthe DPBFDAF update 
part of section 4.2 is used for the NUPBFDAF. 

As the processing delay of the filter part equals Dmax sample intervals, 
the residual signal will be delayed. This delay is taken into account in the 
update equations by a delay Tup· The update equation of a ( delayed) BOP 
with block length A is partitioned in gu = r NI Z] parts.1° For 0 s i < gu 
this can be described by 

llf[(l + 1)A] = llf[lA] + xA,Z[lA- iZ- Tup] ·Jl[lA] (5.27) 

with 
MA[IA] = 2ofk.~[lA])-1 • 1:A[IA]. 

The residual signal is constructed as follows 

= ( l:Bo[lA ~. ~ + Bo] ) 

1:80 [IA - Bo] 
l:Bo[LA] 

= ( r[lA - A ~ .~0 - Dmax] ) . 

r[lA + Bo - 1 - Dmax] 

From equations (5.29) and (5.27) follows the correct value for Tup 

Tup = Dmax - Bo + 1. 

(5.28) 

(5.29) 

(5.30) 

Equation (5.27) can be implemented efficiently with DFTs like in the 
DPBFDAF case. For 0 S i < g0 this can be described by 

yL[lA] 

wf[(l + 1)A] 

(5.31) 

(5.32) 

(5.33) 

10 Also here the coefficient vector !!J..N is extended if r NI Zl . z > N by . r NI Zl . z - N 
coefficlents tha.t a.re kept zero (a.s in DPBFDAF). 
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with 
(5.34) 

The new Non-Uniform Partitioned Block Frequency Domain Adaptive 
Filter (NUPBFDAF) can now he ohtained hy comhining the results of 
the two previous sections. The filter veetors are coupled hy the Fourier­
transforms and the "Hold"-hoxes, as in the previous chapter with the 
DPBFDAF. In figure 5.14 the resulting update part with coupling of the 
adaptive coefficients is depicted. 

5.2.3 Properties of NUPBFDAF 

With help of the properties of the NUPBFDC and DPBFDAF the next 
properties for the NUPBFDAF can he derived: 

• Algorithm and computation processing delay 

DNUPBFDAF + ~NUPBFDAF S Dmax· (5.35) 

• Computational complexity: if the largest filter part FFT, hlock length 
and partition length equal the corresponding update part parameters, 
one FFT can he omitted. The resulting sum of FFTs, IFFTs and 
elementwise multplications equals 

YNUPBFDAF = 

YNUPBFDCJ = 
where 

(S + Uu) • YFFT{L} + Uu · 'W"®{L} + Yp{L} 

A 

~ g· · YFFT{M·} + L....,('W"NUPBFDCJ + J A J ) (5.36) 
j=O 

2 · 'W"FFT{Mj} +Ui· 'W"®{Mj} 

BJ 
(5.37) 

'=' _ { 1 if L = MG-b A = BG-1 and Z = QG-1 
..... - 2 otherwise (5.38) 

• Memory occupation ( oompare to DPBFDAF) 

G-1 

0NUPBFDAF ~ L((3 +(Ui -1). (qj + 1)). Mj + Bj) 
j=O 

7 +(2 + (uu- 1) · z) · L +A+ N. (5.39) 
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z 

Compose and Split 

Figure 5.14: Update part of NUPBFDAF. 
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1f for all j, 0 :5 j < G, M; is much smaller than N,11 and A= Z,12 

this can he approximated hy 

G-1 
1 

eNuPBFDAF ~ 2 · N + 6 ·A+ I:<2 + qi +-) · uiQi. (5.40) 
'=0 q; ,_ 

5.2.4 Convergence and Tracking 

If we compare DPBFDAF with NUPBFDAF the update part is equal. The 
larger block lengths in the filter part of NUPBFDAF imply the use of an 
older adaptive filter vector wN. As the update part hlock length A is an 
integer multiple of the largest filter part block length ( and of all other 
filter part hlock lengths ), and the filter and update part are synchronized, 
no update of that adaptive filter vector takes place during calculation of 
the filter part blocks. This means that the older adaptive filter vector 
wN in NUPBFDAF equals the one used in DPBFDAF. This implies that 
convergence and tracking properties of NUPBFDAF exactly equal those of 
DPBFDAF, when the update parameters are identicaJ and B = B0 • 

5.2.5 Example of NUPBFDAF 

Our example illustrates the relation hetween delay and complexity. In 
tahle 5.4 and figure 5.15 the NUPBFDAF complexity, delay and memory 
are given as a function of the hlock length Bo ( determining the algorithm 
processing delay) for a filter length N = 4000. The number of different 
partition factors and for 0 :5 j < G, the parameters B;, Qj, Ui and M; 
(except for Bo) are chosen to minimize the complexity VNUPBFDAF· For all 
filters the update part FFT length L equaJs 1024 ( the update hlock length 
A ( and the partition length Z) equal the largest integer multiple of all Bj 
smaller than or equal to 512, which is 512 in all cases considered here). 

Like in the NUPBFDC aJso here the maximum allowable processing 
delay of 0.5 milli-seconds results in Dmax = 0.5 · 10-3 • fs = 4. In tables 5.5 
and 5.6 the complexity VNUPBFDAF is given as a function of the numher of 
different partition factors G in this case. For 0 :5 j < G, the parameters 
B;, Qj, Ui and M; are chosen to minimize the complexity VNUPBFDAF· 

Also here for all filters the update part FFT length L equaJs 1024 (the 
update hlock length A ( and the partition length Z) equal the largest integer 
multiple of all B; smaller than or equal to 512). 

11 1n the cases considered in this thesis, even the largest FFT length Ma-1 is at most 
N/4, see also the remarksin conneetion with equation (4.18). 

12 For every case considered in this thesis, this is true.' 
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Bo 32 64 128 256 512 
6.+D 32 65 131 263 529 

G 3 2 2 2 1 
l]! 389 376 366 364 338 
e 36.6 34.1 34.4 37.6 19.5 

(·103 ) 

Table 5.4: Delay, complexity a.nd memory of NUPBFDAF. 

-+ Bo 
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Figure 5.15: Properties of NUPBFDAF. 



5.2. NON- UNIFORM PARTITIONED BFDAF 

Algorithm DPBFDAF NUPBFDAF 
# part. fac. G 1 2 3 
Subset index j 0 0 1 2 

Block length Bj 4 4 512 
Part. length Qi 60 12 12 512 
FFT length Mj 64 16 512 16 128 1024 

subfilters 9j 67 11 11 6 8 7 
2414 475 431 

1.00 5.08 5.60 

Table 5.5: Complexity using 1 to 3 partition factors . 

. Algorithm 
#par 
Subset index 

Block length 
Subfil. length 
FFT lengt 

WNUPBFDAF 

5.85 

5 
1 2 3 4 

512 
1024 

7 

Table 5.6: Complexity using 4 or 5 partition factors. 

121 



122 CHAPTER 5. NON-UNIFORM PARTITIONED BFDAF 

Tables 5.5 and 5.6 show that the average number of real multiplications 
per sample can be reduced by a factor tioPBFDAF/WNUPBFDAF = 5.87 
for this example. A further increase in the number of different sub-filter 
lengths G does not increase tioPBFDAF/tiNUPBFDAF· The maximum of 
tioPBFDAF/tiNUPBFDAF depends strongly on the value of Dmax and N. In 
figure 5.16 this dependency is depicted for different N while Dmax is varied 
between 1 and N /8. The update part block length A and partition length 
Z equal the largest integer multiple of all B; smaller than or equal toN /8. 
The figure 5.16 shows that for Dmax < N /8 the introduced non-uniform 
partitioning concept is usefull. 

Figure 5.17, where the computational complexity tiNUPBFDAF is de­
picted as function of Dmax and N, shows that an increase of the number 
of filter coefficients N by a factor 4 cost approximately 100 real multiplies 
per sample independent of N and Dmax. For small Dmax the next rule of 
thumb for the number of real multiplications can be deduced from figure 
5.17 

q;NUPBFDAF ~ 50 ·log2(N)- 190. (5.41) 
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Figure 5.16: Complexity gain of NUPBFDAF over DPBFDAF. 
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Figure 5.17: Complexity ofNUPBFDAF. 

5.3 Conclusions 

The introduced new method for fast real time convolution in frequency 
domain by using a non-uniform partitioning reduces the required number 
of real multiplications per sample compared to an approach using uniform 
partitioning. 

For the case of adaptive filtering the computational complexity can be 
reduced enormously by using NUPBFDAF, compared to implementations 
using (D)(P)BFDAF. Complexity becomes almost independent ofthe max­
imum allowable delay. As a rule of thumb the number of real multiplications 
per sample equals approximately 50·log2(N)-190, with N the number of 
filter coefficients. 
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Chapter 6 

N ormalization 

Convergence characteristics of adaptive filters depend on the input sig­
na[ varianee and (auto-)correlation. To re move these dependendes several 
methods are used. Normalization in time domain removes the dependency 
on the input signal varianee with a division of the adaptation constant a by 
this input signal variance. This input varianee therefore must be estimated. 
The division needed in this normalization can be omitted by making a di­
rect estimate of the inverse of the input signa[ variance. Full decorrelation 
in time domain can be obtained by multiplying the gradient vector by the 
inverse autocorrelation matri:~: of the input signal. Efficient algorithms to 
perform such an operation still need a lot of computational power. 

In frequency domain normalization of the update by the input power 
vector reduces the dependency of convergence characteristics on the input 
signal autocorrelation. Direct estimation of the inverse power vector reduces 
computational comple:~:ity as divisions can be avoided. This estimate of the 
power vector however does not always match the actual input signal power. 

In the previous chapters it was assumed that the normalization always 
takes place by multiplying the frequency domain transform of the residual 
signal by the inverse power spectrum. In the partitioned approach this nor­
malization can take place in three ways: we can normalize the residual 
signa[, the input signal or both of them. 

At cost of some small extra computational complexity, the power vector 
dimension and rate can be chosen independently of the update part dimen­
sions and rate. This yields a more fle:~:ible algorithm, which can be of use 
in cases where the non-stationarity of the input signal is the main limiting 
factor. 

125 
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6.1 NLMS 

By normalizing the update of the LMS algorithm the dependency of its 
convergence hehaviour on the input signal varianee is removed. This nor­
malization procedure requires per sample an estimation of the input signal 
varianee and a division (see equation (2.16)). As E{x[k]} = 0, the varianee 
(power) u;[k] = E{(x[k])2} of the input signal x[k] can he estimated for 
0<,8<1hy 

(6.1) 

The parameter ,8 controls the dynamic hehaviour of the ahove equation. 
Deereasing f3 implies that the past of the input signal hecomes more im­
portant in the estimate of the variance, which implies on one hand that the 
estimate is smoothened, and, on the other hand, that (fast) variations in 
the input signal varianee cannot he foliowed hy the estimator. 

To avoid the use of divisions, a direct estimate for the inverse varianee 
ean he used. With help of equation (6.1), we get for 0 < f3 < 1 

1 

(6.2) 

By using 1 +Ç ~ 1/(1-Ç) for small Ç, the ahove is approximated for ,8 < 1 
and ~ · û;2[k- 1](x[k])2 < 1 hy 

&;2 [k] ~ (1 + ,8) · &;2[k- 1] · (1-
1 
~ {3 • &;2 [k- 1](x[k])2

). (6.3) 

By approximating ,8(1 + {3)/(1- {3) hy ,8, we finally get 

&;2 [k] ~ (1 + ,8) · &;2 [k- 1]- ,8 · (û; 2[k- 1] · x[k])2
• (6.4) 

To ensure stahility in the ahove direct inverse varianee estimate, we have to 
avoid that ,8 · (û; 2 [k -1] · x[k]? is larger than than (1 + ,8) ·û;2[k -1]. The 
actual inverse power estimation algorithm therefore is given with a certain 
(small) positive threshold f and 0 < {3 < 1 hy 
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The above equation requires 4 multiplications, which implies for the total 
extra computational complexity for normalization1 

'lflo- = 5. (6.7) 

6.2 BNLMS 

In the BNLMS case we can use the same estimate for the varianee as in the 
NLMS case. A block processing procedure can also be used, by aceurnu­
lating B varianee updates (of equation (6.1)). Therefore we approximate 
(1 - {3)8 by (1 - B{J) and {3(1 - (J)i by {J for 0 < i < B. This gives the 
following block procedure for direct varianee estimation, with 0 < B · {J < 1 

o-;[~~:B] = (1- B · {J)û;[(~~:- 1)B] + fJ · (~8 [~~:B])t~B[~~:B]. (6.8) 

Like in the previous section, a direct estimate for the inverse varianee ca.n 
be obtained using a certain (small) positive threshold € for 0 < B · fJ < 1 
by 

(1 + B · fJ) · a-;2 [(~~:- 1)B] 
-fJ. (û;2[(~~:- 1)B])2. (~B[~~:B])t~B[~~:B] 

{ 
€ for c2 [~~:B] < € 

C2 [~~:B] otherwise · 

(6.9) 

(6.10) 

The above estimation algorithm requires B + 4 multiplications, which im­
plies for the total extra computational complexity for normalization2 

6.3 Frequency Domain N ormalization 

6.3.1 BOP as Basis 

Circulant. Matrices 

(6.11) 

The BNLMS algorithm ca.n be performed efficiently in frequency domain 
with FFTs. To improve convergency behaviour we want to incorporate the 

1We multiply the residual signal r[k] by 2o:8-;2 [k], taking 1 multiply (as 2o: ean he 
ineorporated in the varianee estimation algorithm). 

2 When the bloek length Bis smaller than the filter length N, we multiply the residual 
signal vector r.B[~~:B] of the BNLMS update equation by the inverse varianee estimate. 
This takes B multiplieations (as also here 2o: ean be incorporated in the varianee es­
timation algorithm). If B > N, we multiply ;yN,B[~~:B]r.B[~~:B] by the inverse varianee 
estimate, this implies that in fact Wq{B} = B + min{N, B} + 4. 
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BOP or BRLS decorrelation properties in this frequency doma.in algorithm. 
We start with the BOP update equation, given by3 

(6.13) 

Toperfarm the above BOP update equation e:fficiently in frequency doma.in, 

the inverse autocorrelation matrix ('R.~[KB])-1 must be approximated by a 

circulant matrix (R .. ~ [I'I':B])-1 and the input signal matrix xN,B[I'I':B] must 

be transformed toa circulant matrix(~ [I'I':B])t, like in the FBNLMS case 
of chapter 3. This results in a (time domain) update equation with circulant 
matrices 

wN[(K + 1)B] = .!QN[I'I':B] + 2a ( JN oN,M-N ) 

·(~(I'I':B])t(-k~[I'I':B])-1 
( ;~~;] ) . (6.14) 

Algorithms (6.13) and (6.14) will behave identically when there is a matrix 
vM 

(?t.'li [KB])-1 such that 

XN,B[KB]('R.~[I'I':B])-1 .r8 [1'1':B] (6.15) 

= ( JN oN,M-N ) (~[I'I':B])t(-k~[KB])-1 ( !:q,~~;] ) . 
As the above condition (6.15) must be he valid for all .r8 [kB], we can 
eleminate the residual signal on both sides. By replacing the input signal 
matrix by its circulant version, and multiplying by JN, we get 

Knowing that condition (6.16) must be fulfilled for all circulant matrices 

(~[I'I':B])t the input signal matrix (XM[KB])t can be discarded, as will be 

3 In partitioned structures, the partitioned BOP formula is given for 0 ~i< gu by 

The only differences are the change in parameters a.nd that we have gu equations instead 
of one, mea:ning that this section also holds for partitioned structures, by replacing the 
parameters. 
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(6.17) 

Elemination of' the Input Signal 

It is clear that ( 6.17) is a sufficient condition, we will show that it is also 

necessary. Suppose that there is a matrix ('R.'; [~BJ)-1 that fulfills condi­

tion (6.16) for all circulant matrices (j# [~B])t ,4 thus also for the circulant 

matrices (x~ )t' with 

~ t ( oM-i,i IM-i ) 
( i ) = 1i 0i,M -i · (6.18) 

By substituting these matrices in condition (6.16) we get for all 0 $ i < M 

( IN oN,M-N ) (~)t ( oMI-:,B ) ('k.:[~B])-1 (6.19) 

= ( IN oN,M-N ) (~)t('R.';[~B])-1 ( oMI-:,B ) . 

To continue, we first define a matrix ufl·N, with 

M,N-~ ( 1 (QN-l)t ) 
Ui - i • .QM-1 oM-l,N-1 · (6.20) 

The following property holds for this matrix 

':t.M ( 1 (_QM-1 )t ) "M t 
Xi QM-1 oM-1 (Xi ) 

= diag{ ( ~i ) } 
QM-1-i 

(6.21) 

which implies that 

M-1 
L ufl·N( IN 
i=O 

oN,M-N) (~/ = ~1 diag{ ( ~i . ) } 
i=O _QM-1-t 

= IM. (6.22) 

4The transpose of a circulant matrix is a.lso circulant. 
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By aleft-hand side multiplication of condition (6.19) by the matrix ur·N 
a.nd a.n accumulation, we get 

(~ uf'-N ( IN fi'.M-N ) (x;")') ( oM;-:·8 ) (fl.~["B])-1 (6.23) 

= (~' uf'-N ( IN oN,M-N ) (x;")') ('k.!'("B))-1 ( oMI--:,8 ) . 

With help of property (6.22), we obtain condition (6.17), implying that it 
is indeed necessary. 

Approximation 

By multiplying both sides of condition (6.17) by the autocorrelation matri­
ces, we get 

(6.24) 

The matrix on the right-hand side of condition (6.24) is part of a circulant 

matrix -k';! [KB]. If there were such a circula.nt matrix, then the rows of the 
matrix ( oB,M-B IB )t 'k.~[KB] on the right-ha.nd side have to be shifted 
versions of one another, which is clearly not the case. We therefore have 
to make an approximation in order to obtain a circulant matrix. We will 
do this by averaging allelementsin ( oB,M-B IB )t 'k.~[KB] that should 

have been equal for the existance of a circulant matrix it';! [KB] to fulfill 
condition {6.24). 

As -R.![KB] is symmetrie, also it';![KB] is supposed to be symmetrie. 

For a symmetrie circulant matrix it';! [KB] we know that for all 0 $ a < M 
and 0 $ b < M there are Pja-bl [KB], such that 

(6.25) 

where for all 0 < a < M, Pa[KB] = PM-a[KB], so (by omitting the time 
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The B right-most columns of this matrix -k.~ [KB] have to approximate 
( oB,M-B IB )t 'k..~[KB], so we suggest to average all elements in this 

matrix ( oB,M-B lB )t 'k..~[KB] that are supposed to be equal. With 

('k..~[KB])a,b = Pla-bi[KB], this implies for B ~ Af that5 

{ 

B-i. [ B] -piK 
u Il-ï À i-M±B A p;[KB] = JrPi[KB] + B PM-ï[KB] 

2B-M• --pM B T 

for 0 ::; i < M - B 
for M - B :5 i < Af 
for i= Af 

(6.27) 

The main problem that remains is how to compute ( the frequency do­
main transform of) the vector eM[KB] efficiently, with 

(6.28) 

and for M/2 <i< M, Pi[KB] = PM-i[KB]. H we look at the power vector 
~[KB] (see appendix C), defined as 

(6.29) 

and take the inverse DFT of an estimate (see appendix C, equation (C.8), 
we see astrong resemblance with equation (6.27), because 

(6.30) 

6 For a. rea.sona.ble a.pproxima.tion, the matrix oB,M-B conta.ining zeroes must be small 

compa.red to the a.utocorrelation matrix x:[,.B] (or the influence of x:[,.B] must be 
neglectible, but then we do not have a.ny decorrelation at all). We therefore a.ssnme that 
B?:. Af. 
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When B ~ M, which is the case when B > N, then (B- i)/B ~ 
(M- i)/M (for i< M/2), then equation (6.27) is approximated by 

(6.31) 

When Pï[KB] ~ 0 for i > B, then equation (6.31) and (6.30) are equal, 

which means that we may use 'k.~[KB], with (see appendix C, equation 
(C.ll)) 

(6.32) 

6.3.2 Approximation Error 

The quality of our approximation can be given as a function of the input 
signaJ correlation matrices. Suppose there is a not-necessarily circulant 

matrix 'k.~ [KB], fulfilling condition (6.17), so 

(6.33) 

-M vM 
Using ('R.x [KB])-1 instead of ('R.x [KB])-1 would make the frequency do-
main algorithm behave exactly as BOP. We can construct a deviation ma­
trix zM[KB], with 

(6.34) 

by choosing 

(6.35) 

According to equation ( 6.34) frequency domain algorithms achieve the 

same decorrelation as BOP when we use ('k.~[KB])-1zA1[KB] instead of 

('k..~[KB])- 1 . This means that by using ('k.~[KB])-1, a correlation within 

the block remains described by the matrix zM [KB], implying a deviation in 

convergence behaviour defined by the eigenvalue distribution of zM[KB]. 
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6.3.3 BRLS and DBOP as Basis 

Circulant Matrices 

When B > N, the BOP algorithm can he performed efficiently in frequency 
domain with FFTs. If N > B (in non-partitioned structures ), the BRLS 
alg;orithm will he a better basis for transformation.6 The BRLS update 
equation is given by 

(6.37) 

To perform the above BRLS update equation effidently in frequency do­

main, the inverse autocorrelation matrix ('k: [KB])-1 must he approxi­

mated by a circulant matrix (1l~1 [KB])-1 and the input signal matriX 

;rN,B[KB] must he transformed toa circulant matrix (XU[KB])t, like in 
previous section where BOP was used. This results in a (time domain) 
update equation with drculant matrices 

(6.38) 

Algorithms (6.37) and (6.38) will hebave identically when there is a matrix 
vM 

('R-:c [KB])-1 such that 

('R.: [KB))-1 XN,B[KB]LB[KB] (6.39) 

. = ( JN 0N,M-N ) ('k_~[KB])-t(XU[KB])t ( :~:;] ) . 

As the above condition (6.39) must he he valid for all LB[kB], we can 
eleminate the residual signal on both sides. By replacing the input signal 

6 For partitioned structures, BOP is used as basis when A> Z. When this is not the 
case, the partitioned DBOP is chosen, with its update equation for 0 :5 i. < gu given by 

The only differences compared to the update equation of BRLS are the change in para.m­
èters a.nd tha.t we have gu equations instea.d of one, meaning that this section also holds 
for partitioned structures, by replacing the parameters. 
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matrix by its circulant version, and multiplying by J N, we get 7 

('k.:[KB])-1 ( IN oN,M-N ) (XM[KB])t ( oMI~B,B ) (6.40) 

= ( IN oN,M-N ) ('R~[KB])-1(XM[KB])t ( oMI-:,B ) . 

Knowing that condition (6.40) must he fulfilled for all circulant matrices 

(~[KB])t the input signal matrix (~[KB])t can be discarded, as will be 
shown hereaft er, leading to 

Elemination of the Input Signal 

It is clear that ( 6.41) is a suflident condition, we will show that it is also 

necessary. Suppose that there is a matrix (ft~ [KB])-1 that fulfills condi­

tion (6.40) for all circulant matrices XM [KB], thus also for the circulant 
. ;vM . h matnces ""i , wit 

(6.42) 

By substituting these matrices in condition (6.40) we get for all 0 ~ i< M 

('k.:[KB])-1 ( IN oN,M-N ) (X~)t ( oMI-:,B ) (6.43) 

= ( IN oN,M-N ) (fl~[KB])-1(X~)t ( oMI~B,B ) . 

To continue, we first define a matrix ur·M' with here 

(6.44) 

7 Because x: [ ~~:B) is symmetrie and toeplitz, x: [ ~~:B) = J N x: [ ~~:B)J N. This means 

that also (X:[~~:B])-1 = JN(x:[~~:BJ)-1JN. It is not necessary for the sequel of this 
subsection to eliminate JN in condition (6.39), but it keeps the resemblance with the 
previous section. 
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The following property holds for this matrix 

(6.45) 

which implies that 

~ vM t ( oM-B,B) B,M 
L.t (Xi ) 1B ui 
i=O 

= r. iliag{c.t.)} 
= rM. (6.46) 

By a right-hand side multiplication of condition (6.43) by the matrix U~,M 
and an accumulation, we get 

(fl.~[KB])-1 (IN oN,M-N) (~1(x;")' ( oMI-:,B) uf·M) (6.47) 

= (IN oN.M-N )(fl.!'[KB])-1 (~1(X;")' ( oMI-:,B) Uf·M). 

With help of property (6.46), we obtain condition (6.41), implying that it 
is iudeed necessary. 

Approximation 

By multiplying both sides of condition (6.41) by the autocorrelation matri­
ces, we get 

(6.48) 

The matrix on the right-hand side of condition (6.48) is part of a circulant 

matrix i<.~ [KB]. If there were such a circulant matrix, then the rows of the 
matrix -k.: [KB] ( IN oN,M-N ) on the right-hand side have to be shifted 
versions of one another, which is clearly not the case. We therefore have 
to make an approximation in order to obtain a circulant matrix. We will 
do this by averaging allelementsin -k.:[KB] ( IN oN,M-N ) that should 
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have been equal for the existance of a circulant matrix 'k~ [KB] to fulfill 
condition (6.48). 

As ft~ [KB] is symmetrie, also 'k~ [KB] is supposed to he symmetrie. 

For a symmetrie circulant matrix 'k~ [KB] we know that for all 0 :5 a < M 
and 0 :5 b < M there are P!a-bl [KB], such that 

vM 
('R..:r: [KB])a,b = P!a-b![KB] (6.49) 

where for all 0 < a < M, Pa[KB] = PM-a[KB], so (by omitting the time 
indices on the right-hand side) 

PM 
2 

Po 

The N upper-most rows of this matrix 'k~[KB] have to approximate the 

matrix ft~[KB] ( IN oN,M-N ), so we suggest to average allelementsin 

this matrix 'k.~ [KB] ( IN oN,M-N ) that are supposed to he equal. With 

('k.~ [KB])a,b = P!a-bi[KB], this implies for N ~ Af that8 

Pi[ KB]= Ni Pi[ KB]+ i-~±N PM-i[KB] for M- N $i< Af 
{ 

~Pi[KB] for 0 :5 i < M - N 

~PM fori= Af 
2 

(6.51) 
Like in the BOP case (with Band N interchanged), if N ~ M, which 

is the case when N > B, then (N- i)/N ~ (M- i)/M (for i< M/2), and 
equation ( 6.27) is approximated by 

{ 

M-i p,;[KB] for 0 $i< M- N 
});[KB]~ 1i-i Pi[ KB]+ ifPM-i[KB] for M- N :5 i< Af 

PM[KB] for i= Af 
2 

(6.52) 

8 For a reasonable approximation, the matrix oN,M-N conta.ining zeroes must be small 
compared to the autocorrelation matrix n!" [xBJ ( or the influence of n!" [1CB] must be 
neglectible, but then we do not have any decorrelation at all). We therefore assume that 
N ?:. 1tf. 
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When Pi ~ 0 for i > N, then equa.tion (6.52) a.nd (6.30) are equal, which 

means tha.t we ma.y use -k.: [x:B] also here, with (see appendix C, equa.tion 
(C.ll)) 

(6.53) 

6.3.4 Approximation Error 

The quality of our a.pproximation can he given as a function of the input 
signa.l correlation matrices. Suppose there is a. not-necessa.rily circulant 

matrix 'k:[x:B], fulfilling condition (6.41), so 

(il..:[x:B])-1 (IN oN,M-N) = (IN oN,M-N) (fl.:(x:B])-1. (6.54) 

-M vM 1 
Using ('R.:r [x:B])-1 instea.d of ('R.:r [x:B])- would make the frequency do-
main a.lgorithm behave exactly as BRLS. We can construct a devia.tion 
m.atrix ~ [ x:B], with . 

(6.55) 

by choosing 

According to equa.tion (6.55) frequency domain a.lgorithms a.chieve the 
z..M' V M 

same decorrela.tion as BRLS when we use :L [x:B]('R.:r [x:B])-1 instead of 

('k.: [x:B])-1 • This means tha.t by using (-k.~ [x:B])-t, a. correlation within 

the block remains described by the matrix~ [x:B], implying a deviation in 

convergence beha.viour defined by the eigenvalue distribution of~ [x:B]. 

6.3.5 Transformation to Frequency Domain 

The circulant matrix -k.~ [ x:B] can he diagona.lized totheinput signal power 
( see appendix C) 

(6.57) 

with 
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Using an estimate.t: [KB] of~[KB], equation (6.14) (andequation (6.38)) 
can he computed in frequency domain as follows 

with 

wN((K + 1)B] = wN[KB] + 2a ( JN oN,M-N ) (:FM)-1 

·((XM[KB])* ® (.t:[KB])-1 ® RM[KB]) (6.59) 

(6.60) 

The inverse power vector (PM[KB])- 1 is the elementwise inverse of the 
AM 

estimate P [KB] of the power vector. 

6.3.6 Power Spectrum Estimation 

The input power vector as defined in equation (6.58) can he estimated 
elementwise (like the varianee in the NLMS and BNLMS case) for 0 < 
M/3 < 1 hy 

(FM[KB])i = {1- Mf3)(PM [(K- 1)B])ï + f3!(XM[KB])il 2
• (6.61) 

The main disadvantage of this equation is that the inverse of it is needed in 
the update equation, which implies the use of divisions. This can he avoided 
by a direct estimation of the inverse power vector, like in the NLMS and 
BNLMS case, using a certain ( small) positive threshold f: for 0 < M · f3 < 1 
hy 

pi-1 [KB] = (1 + Mf3)(.t:[(K- 1)B])i1 

-f3(.t:[(K -1)B])i2 I(XM[KB])il2 (6.62) 

(.t:[KB])il = { f: for pi-l[KB] < f: (6.63) 
pi-1 [KB] otherwise 

In appendix A the impact on computational complexity and memory oc­
cupation of the ahove estimation metbod is calculated. 

6.4 Partitioning in the Update Part 

6.4.1 Place of Normalization 

The power vector estimate does not always match the actual input signal 
power. For example, if we look at figure 4.4, we see that delayed versions 
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of the input signal vector are used. The normalization however does not 
take this into account. It was assumed that the correlation and varianee 
are equal for these delayed input signals. When we have speech-like input 
signals, this is certainly not a valid assumption. 

A solution can he to normalize the input signal instead of the residual 
signal. The normalization of the older input signal veetors is then carried 
out by an older estimate of the input signal power. In figure 6.1 the place 
to normalize the residual signal is labelled N1. The normalization of the 
input signal takes place at N2. 

The residual signal however, does contain elements from the delayline, 
so a better solution for the normalization problem is to normalize partly 
at place N2 (for the residual signal) and partly at N1 (for the input signal). 
This implies a normalization by the square root of the power vector, like 

yL[lA] = 2a(~.dlA])-Î ® RL[lA] (6.64) 

wf'[(l + l)A] = wf[lA] + ( JZ oZ,L-Z ) . (FM)-1 

·((xf[lA])* ® (~,2 [(1- i)A])-~ ® yL[lA]). (6.65) 

Also here a direct estimate can he used to avoid the use ofsquare roots and 
divisions. With a certain (small) positive threshold €, the inverse square 
root is estimated for 0 ~ i < L and 0 < L · (3 < 1 by 

Pi-t[lA] = (1 + L(J)(~[(l- l)A]);t 

-(J((~[(l- 1)A]);t)si(XL[lA])il2 

= { € for Pi-t[lA] < € 

p;Î[tA] otherwise 

6.4.2 Reduced Dimension Normalization 

Large Dimensions 

(6.66) 

(6.67) 

In the previous subsection it was already concluded that in applications 
where speech-like input signals are used, normalization can he a problem. 
In chapter 8 the acoustic echo canceller implementation shows that a large 
update part block length, partition length and Fourier transform can have 
a negative infiuence on the decorrelation properties. This is caused by the 
fact that on one hand the sample frequency in the update part is too low 
compared to the non-stationary aspects of the input signal (speech). On 
the other hand also the large Fourier transforms involve a high resolution 
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x[k] 

wf'[lA] m5"[lA] 

Figure 6.1: Places to normalize. 
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in frequency domain, which implies that the varianee per frequency domain 
bin (vector element) fluctuates enormously. Both problems can be solved by 
taking smaller parameters in the update part, but this would increase the 
computationaJ complexity to an often unacceptable level. We can improve 
the power vector estimation by increasing the rate of the power vector 
update, which would need some extra (large) FFTs of the input signa!. 
Another solution would be to decouple update part parameters from the 
lengthand rate of the power spectrum estimation part. 

Parameter Decoupling 

We start with a BOP update equation, with block length A71 ( and block 
index À), given by 

wN[(.X + 1)A71] = wN[.XA71] + 2aXN,Ap[.XA71](fl~P[ÀAp])-1.tAP[.XA71], (6.68) 

and partition it into N parts, so for 0 :::; j < N 

By choosing a Fourier transform length Lp, this can be written as 

with 

Like in the previous chapters, yLP[.XAp] can be approximated by 

yLP[.XA71] = 2a(P~P[.\Ap])- 1 Q9 RLP[.XAp] 

where 

(6.70) 

(6.71) 

(6.72) 

(6.73) 

(6.74) 

By assembling groups of Z coefficients out of the update equations 
(6. 70), with, like in the (D )PBFDAF case, 9u = f ~l, we obtain for 0 :5 
i< 9u 

(6.75) 
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with 
(6.76) 

Choosing a block length A, such that 1" is integer, and block index l, we 
can accumulate A/ Ap update equations (6.75), as follows for 0 si< 9u 

A/A"-1 A 
wf[(l + l)A] = lQf[lA] + L (XZ,A"[(ly- j)Ap- iZ] 

j=O p 

·yA"[(l~- j)A ]) (6.77) 
- Av P 

= lQf[lA] + xz,A[lA- iZJ.;l[lA] (6.78) 

with 

( 

llA"[lA ~A+ Ap] ) 

yA[lA]- • 
- - yAP[lA- Ap] . 

- llA"[lA] 

(6.79) 

Equation (6.78) resembles the update equation of chapter 4, and by chosing 
L ~ A + Z - 1, we obtain 

(6.80) 

(6.81) 

The part of the partitioned update part where the vector yL[tA] is 
calculated with reduced dimension and increased rate of the power vector 
is depicted in figure 6.2. The one sample delays tl111 delay over Ap · T 
seconds here. The rest of the update part is equivalent to figure 4.4. 

The method for reducing power dimension requires three extra (I)FFTs. 
Two of them are depicted in figure 6.2, the third is needed for the estimation 
of the input signal power vector of length Lp (we cannot use the already 
available vector of length L here ). Knowing that also the power estimation 
and elementwise multiplication take place on a different rate and with a 
different size we obtain for the extra computational complexity 

(6.82) 
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Figure 6.2: Decoupling power vector. 
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6.5 Conclusions 

By making a direct estimation of the inverse power (vector), divisions can 
be avoided in adaptive filtering, which induces a large rednetion of the 
computational complexity. Time domain decorrelation by an inverse au­
tocorrelation matrix can be computed in frequency domain, making some 
approximations, by an elementwise vector multiplication. The quality of 
the approximations made in frequency domain, compared to time domain 
adaptive filtering, depend on the algorithm parameters. The approximation 
error in (D)PBFDAF can be reduced by increasing the partition length. 

At the costof a small extra computational complexity, the power vector 
dimension and rate can be chosen independent of the update part dimen­
sions and rate. This yields a more flexible algorithm, which can be of use 
in cases where the non-stationarity of the input signal causes probieros in 
the normalization ( and thus in convergence behaviour ). 



Chapter 7 

Comparison 

The algorithms introduced in the previous chapters all have different proper­
ties. First we willlook at the relation between the computational complexity 
of the algorithms and the algorithm processing delay. After that the imple­
mentation dependent computation processing delay is taken into account. 

Simulation results using an acoustic echo cancellation structure with a 
simulated room are used to compare the convergence and tracking properties 
of the diverse algorithms. 

7.1 Complexity, Delay and Memory 

7.1.1 Fixed Filters 

As the total processing delay depends on the specHic hardware used, it is 
impossible to make an implementation independent comparison. Therefore 
we will first look at the relation hetween the algorithm processing delay 
.6. and the complexity 'iJi. In figure 7.1 the dependency of this complexity 
on the algorithm delay is depicted for different algorithms to compute a 
convolution (fixed filter) of length 4000 (the number of coeffi.cients). The 
"almost" logaritmie scale for .6. is chosen because for all hlock processing 
algorithms .6. = B - 1, and the examples used to plot the figure use B = 2i 
for 0 ::::; i ::::; 9. This implies that the vertical lines correspond to the 
examples used in chapters 2 till 5. 

In order to take the computation processing delay into account, we 
choose the TMS320C30 processor as implementation hardware. With help 
of appendix A and assuming a sample frequency of 8 kHz, we can plot the 
numher of real multiplications per sample for a TDC, BFDC, PBFDC and 
NUPBFDC as a function ofthe maximum allowable delay in figure 7 .2. At 8 

145 
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Figure 7.1: Complexity of TDC, BFDC, PBFDC and NUPBFDC as func­
tion ~f algorithm processing delay. 
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Figure 7.2: Complexity of TDC, BFDC, PBFDC and NUPBFDC as func­
tion of total processing delay. 
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kHz a single TMS320C3ó processor executes 2083 instructions per sample. 
Besides W multiplications, the algorithms also need additions, load, etc., 
a.lso taking in the order of W instructions. This means that we need a 
few times W instuctions to implement an algorithm with a computational 
complexity of W. This means that a few signal processors are already 
needed to implement a TDC in real time. The figure also shows the huge 
computation processing delay of BFDC compared to PBFDC and certainly 
NUPBFDC for an equal complexity W. The "inregularity" that can he 
observed in the BFDC curves is caused by the jump from FFT length 4096 
(for B ::s; 64) to 8192 (for B ~ 128), because B + N must be smaller that 
the FFT length. 

The NUPBFDC is in fact a generalization of PBFDC, which on its term 
is a generalization of BFDC. This implies that for increasing maximum 
allowable processing delay Dmax all complexity curves of the frequency 
domain algorithms will converge to the same curve. The first signs of this 
proces occur on the right-hand side of the figures. 

7.1.2 Adaptive Filters 

Having compared the convolutions, we will now look at adaptive filters 
Also here the total processing delay depends on the specific hardware used, 
so first the relation between the algorithm processing delay ~ and the 
complexity W is studied. In figure 7.3 the dependency of this complexity on 
the algorithm delay is depicted fora filter length N = 4000. For DPBFDAF 
and NUPBFDAF we use an update part block length and partition length of 
512 (implying a Fourier transformation lengthof 1024), like in the examples 
in chapters 4 and 5. 

Taking the computation processing delay into account, as in the previ­
ous subsection, we can plot complexity for the adaptive filtering algorithms 
as a function of the maximum allowable delay in figure 7.4. The compu­
tational complexity of the adaptive filter algorithms is clearly proportional 
to the complexity of the convolutions used, For the "irregularities" in the 
BFDAF curves, the same explanation as in the fixed filter case for BFDC 
is valid. We see that for a maximum allowable processing delay of 512 
samples, NUPBFDAF, DPBFDAF and PBFDAF have equal complexity. 
This is caused by the facted that the most efficient realization of both 
NUPBFDAF and DPBFDAF in this case is a PBFDAF. Forsmaller maxi­
mum allowable processing delays, we observe a huge decrease in complexity 
from BFDAF, RLS (here FTF) and BNLMS towards PBFDAF, DPBFDAF 
and eventually NUPBFDAF. 
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Figure 7.3: Complexity of AF's as function of algorithm processing delay. 
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Figure 7.4: Complexity of A F's as function of the tot al processing delay. 
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7.2 Convergence and Tracking 

In this section simulation results of convergence behaviour of the frequency 
domain algorithms are presented. The acoustic echo canceller is kept in 
mindas example, so all algorithms are tested using a simulated room im­
pulse response as "echo path", where we assume a 5 x 6 x 3.5 room whose 
impulse response is sampled at 8 kHz, and truncated at 992 samples.1 In 
figure 7.5 this impulse response is depicted. 2 

.4 
f 0.15 1-··········HH+··-d·+lltt··i:··· 

0.1 1-····l··+·i··l··l+t 

-+sample number i 

Figure 7.5: Truncated room impulse response fJ.. 

We perform three groups of test, with three different input signals. 

• Tests A: A white noise signal filtered by a Moving Average (MA) filter 
of order lis used as input signal, x1[k] = 0. 711· ( n[k] + 0.99 · n[k -1]), 
where n[k] is white noise with C{n[k]} = 0 and C{(n[k])2} = 1. The 

1Choosing N = 992 makes it possible fora PBFDAF with B = 4, Q = 124 and !/F = 4 
to have UF • Q ;;::: N. 

2 Note that all room impulse response components are positive. This is caused by using 
the following a.ssumption for the construction of the simulated room impulse response. 
Refl.ections against wa.lls are seen as a longitudina.l waves reaching a "closed end", so a 
positive pulse reflects as a positive pulse [53, 4]. In practice, not all components will be 
positive, ca.used by non idea.l re:Bections and non idea.l responses of the loudspeaker and 
microphone. 
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Power Speetral Density (PSD) S:c1 ,w of Xt[k] is depicted in :figure 7.6 
(see appendix C). 

• Tests B: The PSD Sx2 ,w of the input signal x2[k] of the second group 
of experiments is depicted in :figure 7. 7. This signal is chosen to show 
that complicated signals ( with a large relevant autocorrelation length) 
require a large decorrelation dimension. 

• Tests C: A white noise signal :filtered by a Moving Average (MA) filter 
of order 16 is used as input signal, x3[k] = 0.577( -n[k]+n[k-8]+n[k-
16]), where n[k] is white noise with t'{n[k]} = 0 and t'{(n[k])2} = 1. 
The PSD S:c3 ,w of x3(k] is depicted in :figure 7.8. Choosing the signal 
this way makes decorrelation with a matrix of dimension 8 or smaller 
useless, as there is no correlation within a block of that length. 

2 ~ ! i 

J ~:~ m ~~t"".~··.·· ....... ·.·.••'\•••••l-•••••••••••""'"'""""'"'''•••••••""'"""+"""''''''''''""""'.'"'-1 

1 

::: : =t =t -~::J:~ ...... ~ .............. ·t· ...................... + ........................ t .... -1 

::: =:::::::f:.=--t-=+:=r~r"----
0 0.5 1 1.5 2 2.5 3 

--+ w 

Figure 7.6: PSD Sx1 ,w of Xt[k]. 

In tables 7.1, 7.2 and 7.3 the diverse testing parameters are given, as well 
as the complexity and the number of memory locations needed according 
to the formulas of the previous chapters. Note that increasing the quotient 
of Q and B also increases the amount of memory needed. This is caused 
by the input signal delay line ( and could he red u eed at cost of some extra 
FFTs). The results ofthe diverse tests are depicted in :figures 7.9, 7.10 and 
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Figure 7.8: PSD Sx3 ,w of x3[k]. 
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7.11. As we are using stationary input signals, and chose the input signa! 
in such a way that î'{(e[k])2} = 1, we can look at the squared residual 
signa! (r[k])2 to investigate convergence behaviour. In order to keep the 
convergence behaviour visible, some averaging of ( r[k])2 is done to get an 
estimate of î'{(r[k])2}. In all tests, the adaptive weights are irutially put 
to zero. 

Parameters 
Test Algorithm Filter Update ']! e 

Q M 9F A=Z L ·103 

FBNLMS 11013 5.12 
BFDAF 9991 5.12 

PBFDAF 2244 3.99 
PBFDAF 2424 9.30 
PBFDAF 3596 33.0 

DPBFDAF 504 1024 670 13.9 

Table 7.1: Test parameters of test 1, N = 992 and a= 2 ·10-4 

s -30 ..... . 

t 

-70~~~~~~~~~~---~~~~~~~~ 
0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 

-+sample number ·104 

Figure 7.9: Convergence behaviour for test 1. 

In the first group of tests, we see that the PBFDAF with a small par­
tition length Q already improves convergence behaviour sigruficantly com­
pared to FBNLMS. Increasing Q will decrease the inter-block correlation 
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11 Parameters 
Test Algorithm m Filter Update " e 

Q M 9F A=Z L ·103 

B_F FBNLMS 4 1024 11013 5.12 
B_B BFDAF 4 1024 9991 5.12 
B_ P2 PBFDAF 4 28 32 36 2424 9.30 
B_ P3 PBFDAF 4 124 = 128 8 3596 33.0 
B_ D DPBF~ 32 36 504 1024 670 13.9 

Table 7.2: Test parameters of test 2, N = 992 and a = 2 · 10-4 

--~ -5 1-··\ .,. ,~,············!··········+ ........ ! ............... + .............. ; .............. + .. ' + ........... + ............ -! 
N"' 
~ -10 ..... ......... 

0 

'i -151-............................... ,.,..."'"""''''""'~'-•.::~~ ........ ; .......... . -
t 

-251-.... ····-+ .............. ~ ................ -j-.............. +''"-::.:· .... j ............... + ............ l ................ , ............ ft'::~ 

-301-............................. ! ............... .. 

-35 ...... 

- sample number · ·104 

Figure 7.10: Convergence behaviour fortest 2. 

Parameters 
Test Algorithm Filter Update " B Q M UF A=Z L 
c_ F FBNLMS 4 1024 11013 
c_ B BFDAF 4 1024 9991 
c_ P1 PBFDAF ti:+ 4 8 248 2244 
c_ P2 PBFDAF 28 32 36 2424 
c_P3 PBFDAF 124 128 I 8 3596 
c_o DPBFDAF 11 4 28 32 36 252 512 699 

e 
·103 
5.12 
5.12 
3.99 
9.30 
33.0 
12.6 

Table 7.3: Test parameters of test 3, N = 992 and a = 2 · 10-4 
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Figure 7.11: Convergence behaviour fortest 3. 

proportional to the number of blocks, which is clearly shown in the figure. 
Of course BFDAF performa the best, while also DPBFDAF shows good 
performance ( under these stationairy input signal conditions ). In both 
DPBFDAF and BFDAF the approximation error (from the "perfect" time 
domain algorithms to the frequency domain algorithms) seems neclectibly 
small. This is caused by the smalllength of the relevant part of the input 
signal autocorrelation function. 

In the second group of tests a more "sophisticated" signal causes more 
infl.uence by the approximation error, as can beseen in figure 7.10. Weneed 
a much larger partition length Q ( determining the decorrelation dirneusion 
in PBFDAF when Q > B) to obtain equal impravement in convergence 
behaviour as in the first group of tests. A larger relevant autocorrelation 
length for the input signal x2 [k] compared to x1 [k] keeps the inter block 
correlation (that is not removed) large compared to the correlation within 
the block (that is removed). 

The third group of experiments shows that decorrelation ( or its fre­
quency domain approximation) by a matrix that is too small to contain 
any of the relevant input signal correlation does not improve convergence 
behaviour compared to FBNLMS ( there is no correlation within the blocks 
to be removed). Larger partition lengtbs of course start to reduce the inter 



7.3. CONCLUSIONS 155 

block correlation (by moving it within the blocks, where it is removed) so 
convergence behaviour is improved by increasing the partition length. 

7.3 Conclusions 

The simulations in this section confirm the assumptions made about the 
convergence behaviour in the previous chapters. Comparing complexity of 
the diverse algorithms, we observe that the frequency domain algorithms 
DPBFDAF and NUPBFDAF can reduce computational complexity enor­
mously compared to BFDAF and the time domain algorithms while main­
taining convergence properties. 
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Chapter 8 

Acoustic Echo Cancellation 

To investigate the reai-time performance of the DPBFDAF algorithm, an 
acoustic echo canceller based on this algorithm is implemenled on a sin­
gle DSP, the TMS320C30. Reai-time echo cancellation requires some ex­
tensions to the algorithm. Especially stepsize control in combination with 
normalization needs attention. Furthermore, when "double talk" appears 
the adaptation of the coefficients must be frozen, otherwise large misadjust­
ments ( or even divergence) of the weights yields a very bad performance. 

A ftexible setup of the DPBFDAF for acoustic echo cancellation makes 
it possible to choose the sample frequency, the number of coefficients and 
the processing delay independent of one another ( only limited by the total 
complexity). 

8.1 Introduetion to AEC 

In [36] a one DSP implementation of an Acoustic Echo Cancelier ( AEC) 
based on an unconstrained PBFDAF approach with 2048 coefficients at a 
rate of 16kHz (thus cancelling an echo of a.t most 128 milli-seconds) with 
a processing delay of 32 milli-seconds is introduced. The use of PBFDAF 
in a one chip implementation, results in a. large processing delay (32 milli­
seconds) caused by complexity constraints. A second disadvantage of the 
above mentioned implementa.tion is the use of the unconstrained version of 
PBFDAF to decrease computational complexity as only three (Inverse) Fast 
Fourier Transforma are needed then [36]. Using a constrained frequency do­
main algorithm in partitioned structures leads to much better convergence 
behaviour compared to unconstrained structures (see subsection 4.3.3) 

The reduction in complexity of DPBFDAF compa.red to PBFDAF makes 

157 
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it possible to implement a real-time AEC with a smaller processing delay 
and a better convergence behaviour [18, 4]. A further improverneut would 
be obtained using NUPBFDAF, which means that the PBFDC used to 
implement the filter part of DPBFDAF has to be replaced by NUPBFDC, 
which has not been completed yet. Reai-time echo cancellation according 
to the scheme of figure 8.1, requires some enhancements to the adaptive 
algorithms. A variabie stepsize algorithm (in combination with the nor­
malization part) is needed for performance optimization. When "double 
talk" appears, meaning that both the input signal x[k] and the local speech 
signal s[k] contain speech, the adaptation ofthe coeffi.cients must be frozen, 
otherwise large misadjustments ( or even divergence) of the weights leads 
toa bad performance [4, 28]. 

x[k] 

ë[k] 
r[k] 

Figure 8.1: Acoustic Echo Cancelier scheme. 

8.2 lmplementation 

8.2.1 Hardware 

The AEC implementation is realized on a single DSP, the Texas Imstru­
ments TMS320C30. It has a capacity of 33.3 MFLOPS (Million FLoating 
point Operations Per Second) and is mounted on a Loughborough Sound 
Images (LSI) prototyping board, inserted in a PC-slot. In figure 8.2 the 
hardware configuration is depicted. 

The input signal x[k] is taken from PC memory, and fed toa speaker 
through a Digital to Analog (D /A) converter, Low-Pass Filter (LPF) and 
amplifier, controlled by the DSP. In the same room the microphone is sit­
uated, whose output is directed towards an Analog to Digital (A/D) con­
verter via an amplifier and a low-pass filter, also controlled by the DSP. The 
residual signalis returned to the PC memory (from which it can eventually 
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Figure 8.2: Hardware organisation. 

he sent towards the loudspeaker). Communication between PC and DSP 
takes place via the Dual Ported memory, that can be accessed by the PC 
without halting the DSP. 

8.2.2 Software 

The PC controls the AEC software, running on the DSP. This AEC imple­
mentation consists of several modules: 

• Main part: lnitialization of the AEC. 

• Interrupt Service Routine {ISR}: Because ofthe very small block 
length in the filter part and large block length in the update part of 
the adaptive filter, (many) very small time frames to compute the 
update part are available. Therefore a complex interrupt scheme is 
needed to control the spread of the calculation over several time­
frames. Interrupts are also needed for the A/D en D /A converters. 

• Filter part: Calling (I)FFTs and performing elementwise multipli­
cations. To obtain an efficient elementwise multiplication routine, all 
data must reside in the DSP's on chip internal memory. Because of 
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the limited amount of internal memory, the DMA {Direct Memory 
Access) has to run in parallel to transport data from the external (on 
board) memory to the internal memory (and back). 

• Update and coupling part: Calling (I)FFTs and performing ele­
mentwise multiplications. 

• Stepsize control and normalization: The stepsize influences the 
misadjustment and the speed of convergence. Initially, we prefer a 
fast convergence, implying a large stepsize parameter. When the 
residual signal decays, the stepsize parameter is decreased, to obtain a 
smaller misadjustment. When "double talk" occurs, the large residual 
signal implies a huge coeffi.cient misadjustment or even instabillity. 
Adaption of the coeffi.cients must be inhibited during "double talk". 
This implies that we need a "double talk" detector [4]. 

• (I)FFT: The (Real) (I)FFT routines available for the TMS320C30 
processor were not efficient enough, so new routines have been de­
veloped based on [50], that are a bout 30% faster than previously 
available routines [4]. Note that a further impravement in speed can 
be obtained using the techniques described in appendix B. 

8.2.3 Example System Settings 

In principle the variables of the DPBFDAF algorithm can be chosen freely, 
although certain bounds exist to make the implementation less complicated. 
In table 8.1 these bounds are given, tagether with two possible variabie sets 
as example. In the first instanee sample frequencies of 8 and 16kHz where 
chosen for examples 1 and 2, since these are telephony standards. However, 
during the implementation it became clear that these desired frequencies 
had to be reduced, because the total computationalload did not fit within 
the DSP's capacity. 

In table 8.2 the computationalload of the two examples is given. The 
load of each seperate part is defined as a percentage of the DSP's total 
available number of instructions. The overhead parts contain some data­
rearranging and initialization of loops. The table shows that most of the 
load is consumed in the filter part ( caused by the small block length chosen 
there). This means that a significant rednetion in computational complex­
ity can be obtained by using NUPBFDAF insteadof DPBFDAF. 



8.2. IMPLEMENTATION 161 

Variabie Maximum Example 1 Example 2 

Filter length 8192 2016 2560 
Block length 256 8 64 

Filter 256 56 192 
Part 256 64 

512 504 
Update 1024 504 

Part FFT size L 1024 1024 1024 
Sample frequency fs 7 kHz 13kHz 
Echo path length 288ms 192 ms 
Processing delay 1.6 ms 6.5 ms 

Table 8.1: Maxima and examples for variabie sets. 

# Ex.1 Ex.2 
Part Ra te Operation 

Load Load 

FFTM 6.3% 
Filter IFFTM 7.4% 

part 
1 

B·T ® 16.7% 
Overhead 0.8% 

FFTL 8.3% 
Update IFFTL 20.9% 

1 
2.7% part A·T ® 

Overhead 3.1% 
FFTM 10.3% 

Coupling 1 
Overhead 1 0.2% 0.9% A·T 

Stepsize 
control and 1 1 1.2% 2.3% A:r 

N ormalization 
Interrupt 1 2.8% 5.0% 
Service T 

Total 98.4% 84.7% 

Table 8.2: Computational load of algorithm. 
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8.3 Tests 

8.3.1 Test Conditions 

The test room has dimensions 4.90 x 3.75 x 3.20 m3 • The elistance between 
the loudspeaker and microphone is 0.40 m. As we can see in figure 8.2, 
the AEC does not only have to cancel the actual echo path, but also the 
(non ideal) impulse responses of the D /A and A/D converters, the LPF's, 
the amplifiers, the loudspeaker and the microphone. As input signal we 
first use white noise, to show that the AEC indeed works. After that, the 
sentence "entering the forest without moving the grass" is taken as input 
signal and is depicted in figure 8.3. The non-statiónarity of the input signal 
implies that we can not look at the residual signal only to investigate the 
performance, but that we have to normalize it to obtain the Echo Return 
Loss Enhancement, defined by -10 ·log10(l'{r2[k]}/t'{ê'2[k]} ). 

-+time (s) 

Figure 8.3: Speech signal: "entering the forest without moving the grass". 

8.3.2 Test Results 

In the first test, bath examples have a white noise input signal, with the 
adaptive filter weights initialized to zero. The results are given in figure 
8.4. 
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Figure 8.4: Convergence behaviour, x[k] white noise. 
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The second experiments involves a sudden change in echo path, making 
it explicitely time variant (of course it never will he invariant using a real 
room as in this AEC). This is done by placing a hand between microphone 
and loudspeaker. In figure 8.5 the effect of this sudden change in the echo 
path impulse response is shown. Note that the sudden change does not 
take place at the same time in the examples. With a white noise signal, 
the AEC works very well, but it is not cancelling an acoustic echo caused 
by speech. 

The third experiment involves speech. The sentence "entering the forest 
without moving the grass" is applied to the AEC ( using the parameters of 
example 2), and the result is depicted in figure 8.6. Before the sentence was 
applied, the AEC was fully adjusted ( to an approximately time invariant 
echo path). We see that when the input signal amplitude is high, good 
suppression of the echo is obtained ( compare with figure 8.3). If we try 
to do an experiment with a jump on this input signal, it takes upto one 
minute, before the echo canceller reconverges to its steady state. This is 
caused by the fact that the normalization module is not capable of following 
the non-stationarities of the input speech signal. The power vector update 
rateis much to small compared to the length of a segment of a speech signal 
in which we may assume that the speech signal is stationary. 
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Figure 8.5: Convergence behaviour with jump, x[k] white noise. 
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Figure 8.6: Convergence behaviour, x[k] speech at 13kHz. 
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8.4 Conclusions 

Areal-time implementation of a low delay acoustic echo-caneelier can be 
realized on one Digital Signal Processor (the TMS320C30) using the Decau­
pled PBFDAF (DPBFDAF) algorithm. This implementation can be used 
to do further investigations on step-size and power estimation algorithms. 
U sing a large FFT length in the update part to reduce computational com­
plexity, implies that the variations in the input signal correlation can not 
be followed, especially when speech signals are used. This means in most 
cases that the convergence speed is reduced, so the quality of tracldng vari­
ations in the echo-path is diminished. In chapter 6 methods of improving 
the normalization are discussed. 

By using the Non Uniform PBFDAF algorithm the complexity in the 
filter part of the algorithm could be reduced even further, leading to im­
plementations with a smaller processing delay. A second advantage is that 
more computation power is available for the update part, so smaller FFT 
lengths can be used there. This results in better normalization of non­
stationary signals, implying an impravement on tracking variations in the 
echo-path. 
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Chapter 9 

Conclusions 

The huge complexity of the time domain algorithms currently makes imple­
mentation of large adaptive filters on one ( or even a few) DSPs impossible. 
Besides that, the simplest algorithms, such as (Block) (Normalized) Least 
Means square {{B)(N)LMS), suffer from bad convergence behaviour when 
using highly colonred input signals. Time domain decorrelation with the 
inverse of an estimate of the input signal autocorrelation matrix improves 
convergence behaviour (in most cases), but also increases complexity. 

For a large filter length it is known from literature [46, 30] that the 
Block Frequency Domain Adaptive Filter (BFDAF) has good convergence 
properties for relative low complexity, by performing the filtering opera ti ons 
and the decorrelation in frequency domain. By making a direct estimation 
of the inverse power vector, divisions can be avoided in frequency domain 
adaptive filtering. The degradation of convergence behaviour caused by 
the approximations made in frequency domain compared to time domain 
adaptive filtering, depend on the algorithm parameters and the input signal 
(auto-)correlation. By making the right choice in parameters, the effects of 
these approximations can be neglected. 

However, when the processing delay is limited, low complexity can not 
be reached with the BFDAF approach. Besides that, the large FFTs im­
ply a large computation processing delay, so if a small processing delay is 
required, BFDAF is not the right solution. Partitioning of the filter into 
smaller parts reduces the length ofthe FFTs needed. When a small process­
ing delay is needed, the Partitioned BFDAF (PBFDAF) requires a lower 
computational complexity than the BFDAF at the costof a lower decorre­
lation dimension. To gain the same decorrelation dimension as the BFDAF 
with a small processing delay and a computational complexity that is even 
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lower tha.n with the PBFDAF, the Decoupled PBFDAF (DPBFDAF) is a 
good solution. 

A real-time implementation of a low delay acoustic echo-caneelier can 
be realized on one Digital Signal Processor ( the TMS320C30) using this 
DPBFDAF algorithm. Using a large FFT length in the update part to 
rednee computational complex.ity, implies that the variation in the input 
signal. (auto-)correlation ca.n not be followed, especially when speech signals 
are used. This mea.ns in most cases that the convergence speed is reduced, 
so the quality of tracking variations in the echo-path becomes worse. 

At cost of a small extra computational complex.ity, the power vector 
dirneusion and rate ca.n be chosen independently of the update part dimen­
sions and rate. This yields a more flexible algorithm, which can be of use 
in cases where the non-stationarity of the input signal is the main limiting 
factor. 

However, even the DPBFDAF often has a computational complex.ity 
that is too high for real-time implementation purposes, especially when 
non-stationarity of the input signal is the main problem. 

The introduced new method for fast real time convolution in frequency 
domain by using a non-uniform partitioning (NUPBFDC) reduces the re­
quired number of real multiplications compared to an approach using uni­
form partitioning. 

For the case of adaptive filtering using the NUPBFDAF reduces com­
putational complex.ity enormously, compared to implementations using the 
{D)(P)BFDAF. Complex.ity beoomes almost independent on the maximum 
allowable delay. As a rule of thumb the number of real multiplications per 
sample equals approx.imately 50·log2{N)-190, with N the number of filter 
coeflicients. 

By using the Non Uniform PBFDAF algorithm insteadof the DPBFDAF 
algorithm in the AEC, the complex.ity of the filter part of the algorithm 
ca.n be reduced, leading to implementations with a smaller processing de­
lay. A secoud advantage is that more computation power is available for 
the update part, sosmaller FFT lengtbs can be used there, which makes it 
possible to improve tracking of non-stationarities in the input signa! corre­
lation and the echo path impulse response. 



Appendix A 

Properties of Diverse Parts 

FFTs, elementwise multiplications and power vector estimation form the 
main part of frequency domain adaptive filters. Summation of their com­
putational complexity, computation delay and memory occupation leads to 
the properties of the frequency domain adaptive filters as discussed in this 
thesis. 

A.l Transversal Filters 

A.l.l Computation Processing Delay 

Transversal filters consist of a delay line whose outputs are multiplied by 
filter coefficients. The multiplication results are summed up to form the 
output sample. As only one element of the delayline is new each sample, 
computation of all multiplications and additions but one, can be carried 
out during the previous sample interval. This implies that we only have 
to perform one multiplication and addition before a new ouput sample 
can be produced. This means that the computation delay of (B)(N)LMS 
algorithms is approximately zero, and certainly smaller than one (D < 1), 
provided that the computational complexity is not too high for reai-time 
implementation. 

A.2 (I)FFTs 

A.2.1 Radix-2 FFTs 

On most DSPs (depending on their architecture) the radix-2 Decimation In 
Time (DIT) algorithm seems a good choice [37]. In appendix B a further 
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impravement of this DIT FFT algorithm for partially overlapping FFTs 
is introduced, using a block sliding approach. We will not take this into 
account for our complex.ity Il!easurement in this thesis. Here we assume the 
use of a radix-2 DIT algorithm operating on real input data. The calcula­
tion of the computational complex.ity is adapted to the implementation on 
a DSP. We will assume that an IFFT can be realized with the same num­
ber of real floating point multiplications ( using a Decimation In Frequency 
(DIF) algorithm for real ouput data). 

A.2.2 Computational Complexity 

A general radix-2 DIT FFT decomposition is given in appendix B, equa­
tion (B.4). The total number of real multiplications '1i'FFT{M} neerled to 
compute a length M FFT thus equals 

'1i'FFT{M} = 2 · WFFT{M/2} + WsTAGE{M} (A.l) 

where the computational complex.ity of combining two length M /2 FFTs 
to one length M FFT equals WsTAGE{M}. As for M ~ 4 an FFT contains 
only additions, we get for all M $ 4 

'1i'FFT{M} = 0. (A.2) 

The complex.ity involved in combining two FFTs is caused by an element­
wise multiplication where both veetors have special symmetry properties 
(see appendix B). One can deduce that the next number of multiplications 
suffices to compute this elementwise multiplication 

M 
'1i'sTAGE{M} = 4 · ( 4 -1). 

Combination of equations (A.3) and (A.l) gives 

M 
WFFT{M} = M ·log2 S + 4. 

A.2.3 Computation Processing Delay 

(A.3) 

(A.4) 

The computation processing delay of the FFT depends on the specific hard­
ware that is used. In the frequency domain adaptive filters presented in 
this thesis, we need to know the computation delay of two FFTs and one 
elementwise multiplication. The summation of these can he found in the 
next section A.3. 
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A.2.4 Memory Occupation 

Ra.dix-2 DIT FFTs for real input data. ca.n he performed "in place", which 
mea.ns that we need M memory loca.tions for a length M FFT. Besides 
tha.t we need to store the "twiddle factors", the elements of the Fourier 
matrix. The numher of different real and ima.ginary parts of these "twiddle 
factors" different from ±1, equals M/4- 1. Efficient referencing in DSP 
implementations requires the reservation of more memory. To he on the 
save side, Iets say at most M memory locations. 

A.3 Elementwise M ultiplication 

A.3.1 Computational Complexity 

Both the complex vectors, whose elements are multiplied elementwise, are 
Fourier transforma of real valued vectors, and thus have symmetry prop­
erties. This mea.ns that the O'th a.nd M /2'th of a length M vector are 
real, a.nd tha.t for all 0 < j < M /2 the M - j'th element is the complex 
conjuga.te of the j'th element. As for all complex numhers Ca and Cö the 
property (ca)*· (có)* = (ca· Có)* holds, the result of the elementwise mul­
tiplication also ha.s the symmetry property. This implies tha.t only half of 
the frequency components have to he calcula.ted (a.nd stored). 

A complex multiplica.tion ca.n he rea.lized with 4 multiplications a.nd 2 
a.dditions or 3 multiplications and 5 additions. We will a.ssume the use of 
the first option here, as it takes the least numher of operations ( although 
of course the numher of real multiplications per sample is la.rger ). This all 
implies for the elementwise multiplication of two length M veetors that 

M 
4·(2-1)+2 

= 2·M -2. 

A.3.2 Computation Processing Delay 

(A.5) 

The computa.tion processing delay for the computation of a real FFT, a.n 
IFFT a.nd one elementwise vector multiplication defines the processing de­
la.y of the frequency doma.in a.daptive filtering algorithms. In pa.rtitioned 
structures we ca.n see the delayline in frequency doma.in as a transveraal 
filter (the name time-frequency doma.in filtering is often used in literature). 
Like in the time doma.in transveraal filters, also here the older dela.y-line 
elements are processed during the previous interval. 
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As the computation processing delay is hardware dependent, we cannot 
give a general expression for it. Using a sample frequency of 8000 Hertz, 
and implementing the FFTs on the TMS320C30 signal processor yields the 
delays of table A.l. 

M :564 128 256 1024 2048 4096 8192 
2· DFFT 

+De{M} 
1 2 4 18 38 80 

Table A.1: Processing delay for FFTs and multiplications. 

A.4 Power Vector Estimation 

A.4.1 Computational Complexity 

176 

In chapter 6, equation (6.63) the next metbod for direct inverse power 
estimation was mentioned 

1';1 [KB] = (1 + MP>cercK -1)B])i1
-

{3(e[(K -1)B])i2I(XM[KB])ïl2 (A.6) 

As I(XM[KB])il2 = (!R{(XM[KB])f}- (~{(XM[KB])H, and xM[KB] is the 
DFT of a real valued vector, weneed 2(M/2- 1) + 2 = M multiplications 
to calculate all I(XM[KB])ïl2 • The result are M/2 + 1 different real values, 
so we need 4 · ( M /2 + 1) multiplications for the rest of the inverse power 
estimation equation. This inverse power has to be multiplied by a complex 
valued vector, which requires 2 + ( M /2 - 1) · 2 multiplications. Summing 
up the number of multiplications gives the total complexity Wp{M} 

Wp{M} = 4M + 4. (A.7) 

A.4.2 Memory Occupation 

The storage of all cP: [( K-1 )B]);-1
' the storage of the intermediateresult of 

alli(XM[KB])ïl 2 and the two constants requires a total of2·(M/2+1)+2 = 
M + 4 memory locations. 



Appendix B 

Recursive Computation of 
Block FFTs 

In many applications, such as block frequency domain adaptive filtering, 
Fast Fourier Transforma (FFTs) are used. Because of reducing complex­
ity in other parts, FFTs take an increasing amount of the computational 
complexity in such applications. These FFTs often have an input sequence 
that is partially zero, or, in the inverse case, yield output sequences that 
are only partially used. These properties can be used to reduce the compu­
tational burden of the (I)FFTs {41, 52}. Furthermore often FFTs are used 
tltat have an input sequence that partially overlaps with the input sequence 
of a previously computed FFT. These "block" FFTs can be computed re­
cursively with help of the partially zero input sequence FFTs ("windowed" 
FFTs) [20]. We introduce a new concept that is an extension to the sliding 
approach (where the overlap equals the FFT length minus one) [51, 1}. By 
defining the block length as the FFT length minus the overlap, we perform a 
rotation of the input sequence over this block length and use a "windowed" 
FFT with window length equal to this block length to compute "block" FFTs. 

This new method for recursive computation of "block" FFTs decreases 
computational complexity compared to direct computation methods. In ap­
plications where these FFTs are the major computational burden, for ex­
ample adaptive filtering algorithms based on Block Frequency Domain com­
putation (see chapters 3, 4 and 5) this leads to a · huge decrease in overall 
complexity. 
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B .1 Introd u ct ion 

The implementation of a Fourier Transform, even a Fast one, takes a lot 
of computations. In many applications, such as block frequency domain 
adaptive filtering, Fast Fourier Transfarms (FFTs) are used. Because of 
reducing complexity in other parts, the FFTs take an increasing amount of 
the computational comple.xity in such applications ( see chapters 3, 4 and 
5). These FFTs often have an input sequence that is partially zero, or, in 
the inverse case, yield output sequences that are partially used. This can 
be used to reduce the computational burden of the (I)FFTs [41, 52]. 

A third group of FFTs where the computational complexity can be 
reduced, are the "block" FFTs. "Block" FFTs are defined as FFTs whose 
input overlaps partially with the input of a previously computed FFT. The 
FFTs with partially zero input sequence ( "windowed" FFTs) can be used in 
recursive computation of "block" FFTs. Therefore first a short derivation 
of the "windowed" real FFTs and their complexity is given. After that the 
new generalized recursive implementation is explained. 

As a measure of computational complexity, in this appendix the sum 
of the number of real additions and multiplications is used. This measure 
is chosen because the windowing does not have the same effect on the 
number of multiplications as on the number of additions. As stated in 
the introduetion ( chapter 1 ), multiplications and additions in general take 
the same processing time ( or can be performed simultaneously) on Digital 
Signal Processors (DSPs). For a fair comparison between the recursive 
algorithms introduced here and the algorithms that do not exploit the a 
prioiri knowledge, a sum of multiplications and additions seems a better 
choice than just looking at the number of multiplications. 

B.2 "Windowed" Real FFTs 

B.2.1 General Windowing 

A "windowed" real FFT is defined as a length M real FFT from which the 
last M - B input samples are zero, thus 

XM = :FMg;_M 

= :FM ( Qlt~B ) (B.l) 

with 

g;_M ( Xo • • • XM-1 )t (B.2) 
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(B.3) 

The M x M Fourier matrix is denoted as :FM, with its (a, b) 'th element 
(:FM)a,b defined as (:FM)a,b = e-321!'~. Both the FFT length M and the 
bl()ck length B are assumed to be powersof 2. This assumption makes it 
possible to calculate the FFT efficiently by using a recursive scheme. In 
[41, 52] it is shown that by using Decimation-In-Time (DIT) the windowing 
effect with real data can be exploited. On most DSPs ( depending on their 
architecture) the radix-2 algorithm seems a good choke [37]. In the next 
section an example of such a DIT radix-2 FFT is given. The calculation of 
the computational complexity of such an algorithm operating on real data 
is adapted to the implementation on a DSP. 

U.2.2 Radix-2 DIT Real FFT 

A general radix-2 length M DIT FFT decomposition (Mis a power of 2) 
of the FFT of equation (B.1) is defined for all 0 :5 l < M as 

M-1 

xl = L Xke-321!'~ 
k=O 

~-1 ~-1 
'"" -3211' kl 211'..L '"" -:J211' kl = L...J X2ke M/2 + e-3 M L...J X2k+le M/2 
k=O k=O 

(B.4) 

with X, = (XM)l· We see in equation (B.4) that the length M FFT is 
splitted into two length M /2 FFTs. For the number of real floating point 
multiplications and additions lliwiN{ M, B} of a "windowed" length M FFT 
with B non-zero input samples this implies that for M > 4 and B > 2 

MB 
lliwiN{M, B} = 2 · lliwiN{ ""2' 2"} + llist {M}. (B.5) 

Note that in the above recursive scheme every FFT has the same relative 
number of non-zero input data (the windowing properties are kept). In 
equation (B.5) we see that llist{M} operations are needed for the com­
bining of two length M /2 FFTs to one length M FFT. This combining 
consists of two parts: the elementwise multiplication of the result of one of 
the length M /2 FFTs by the elements of the Fourier matrix :FM and the 
ad dition of this elementwise multiplication result and the result of the other 
length M /2 FFT. As both length M /2 FFTs are transforms of real vectors, 
only (M/4)- 1 complex and 2 real values are relevant. Knowing that one 
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complex multiplication takes 4 real multiplications and 2 real additions, we 
can derive the next formula for the number of real floating point addditions 
and multiplications "iJ!s1{M} to combine two length Ml2 FFTs 

"iJ!st{M} = 4·(~ -1)+2·(~ -1)+4·(~ -1)+2 

5 = 2M- 8. (B.6) 

If the number of non zero input samples B equals the FFT length M 
(no windowing), then the last FFT to he computed in the recursive scheme 
is the length 4 FFT. The twiddle factors (elements of the Fourier matrix) 
appearing in that stage are all ±1 or ±J. This implies that only additions 
remain for the computation of such a length 4 FFT. The remaining number 
of additions WwiN{4,4} then equals 

"iJ!wiN{4,4} = 6. (B.7) 

In the case where part of the input data is zero ( B not equal to M) 
we proceed with our recursive scheme until the block length equals 2. This 
implies that in the last stage the FFTs have length 2 · MI B with only two 
non-zero inputs. Equation (B.1) can then he simplified for all 0 :5 l < 
2MIB to 

2:-1 
2 kl x, = L -J '1r2M/B Xke 

k=O 

= 
-j2'1r I 

xo + Xt e 'i1ii"fB. (B.8) 

The number of different non-trivia! (not equal to ±1 or ±J) realor imagi­
nary partsof the twiddle factors (Fourier matrix elements) is MI(2B) -1, 
so MI(2B)- 1 real multiplications are needed. As xo is real, only the real 
parts have to he added, which needs MI B adds. For the total number of 
opera ti ons "iJ! WIN { 2M I B, 2} needed for B < M, the above implies that 

2M 3M 
"iJ! wiN{ B' 2} = 2B - 1. (B.9) 

By using the recursive scheme, we can now compute the overall com­
plexity. Again we have two cases, B = M and B < M. In the case of 
B = M (no windowing), the resulting number of operations equals 

M w~(~) M 
"iJ!wiN{M,M} = 4 wwiN{4,4}+ L 2b-1"iJ!st{

2
b_1 } 

b=l 
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1M 5M M 
= 2 + 2log2( 4 )- 8. (B.lO) 

In the "windowed" case, where B < M the resulting numher of operations 
is 

B 2M Iog2(f) M 
= 2\fwiN{ B,2} + L 2b-tWst{2b-t} 

b=l 

WwiN{M,B} 

3M 1B 5M B 
= T + 2 + -ylog2(2")- 8. (B.ll) 

B.3 Recursive Computation of "Block" FFTs 

B.3.1 Definition 

In [51, 1.] "sliding" FFTs are introduced. With the help of the results 
for "windowed" FFTs we can extend that concept of "sliding" FFTs to a 
metbod for recursive computation of "hlock" FFTs. We assume that on a 
sampled time signa! x[k] each B samples a length M FFT of its last M 
samples has to he performed, then 

:FM ~M[(k + l)B] = :FMD';f ( ~M[kB] + Jl:f[kB] ) 

with for all M, B and k 

~M[kB] = ( x[kB- M + 1] · · ·x[kB] )t 

~[kB] = ( ~8[(k + l)B] QJ~JkB- M + B] ) . 

(B.l2) 

(B.13) 

(B.l4) 

The rotation matrix D';f rotates the vector on its right hand B places 
upward. This can he accomplished hy defining this B place upward rotation · 
matrix D';f as 

M _ ( oM-B,B rM-B ) 
DB - 1B 0B,M-B · (B.l5) 

Note that the rotation matrices are recursively related hy, for B > 1 

D M _ DMDM 
B - 1 B-1 

= (Dt')8
. (B.l6) 

To ohtain an efficient recursive implementation, equation (B.12) is writ­
ten as 

:FMD';f (~M(kB] + Jl:f[kB]) = 

:FMDl;j (:FM)-l(:FM ~M[kBJ +:FM JlM[kB]). (B.l7) 
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The above equation requires the following operations 

1. A time-domain rotation 

2. The result of the previously calculated FFT 

:FM~M[kB]. 

3. A "windowed" FFT 

(B.18) 

(B.19) 

:FM M[kB] _:FM ( ~B[(k + l)B]- ~B[kB- M + B] ) (B.20) 
'JlB - QM-B · 

The "windowed" FFT is described in the previous section, the previous 
FFT is available and the time domain rotation is introduced in the next 
section. 

B.3.2 Rotation 

The time domain rotation can be computed efficiently in frequency domain. 
As the time-domain matrix Dt" is a circulant matrix, the result of a pre­
and post-multiplication by the M x M Fourier matrix and its inverse will 
be .a diagonal matrix [9]. The diagonal of that matrix equals the Fourier 
transform of the :first column of the time domain matrix. Thus 

(B.21) 

with 

( oM-1) 
Jl..M=:FM -~ • (B.22) 

where the n'th element of vector J!f is de:fined as 

M + 211"1< 

(Jl.. ),. = e 1JT. (B.23) 

As :FMD::f(:FM)-1 = (:FMDt"(:FM)-1 )B, the n'th element of the main 
diagonal. of :FMD::f(:FM)-1 equals ((JJ..M),.)B. For the diagonal matrix 
:FMD::f(:FM)-1 then the next theorem can he deduced 

P'DW(FM)-t = Wag{ c~ ) }. (B.24) 
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Using the a.bove equa.tions, the rota.tion reduces to a.n elementwise multi­
plica.tion. Using the special properties of the Fourier vector, we ca.n deduce 
tha.t the number of real opera.tions needed to multiply '.QQ elementwise with 
a. length Q complex vector with a.rbitra.ry elements is 0 for Q < 8, a.nd 
equals 4Q - 24 multiplica.tions a.nd 2Q - 8 a.dditions for Q ~ 8, thus a. total 
6Q - 32 real opera.tions. 

Knowing tha.t the rota.tion conta.ins B length M / B Fourier veetors a.nd 
tha.t both the left a.nd right operand of the elementwise multiplica.tion are 
Fourier tra.nsforms of real va.lued veetors (so the second part is complex 
conjuga.te of the first part) the total rota.tion requires WRoT{M,B} real 
opera.tions 

{ 
0 for M/B < 8 

WRoT{M,B} = 3M -16B for M/B ~ 8 . (B.25) 

B.3.3 Total Complexity of Recursive "Block" FFTs 

The total complexity for the recursive implementa.tion of the "block" FFTs 
is obta.ined by summa.tion of equa.tion (B.25), (B.lO) a.nd (B.ll) 

WREc{M,B} = WwiN{M,B} + WRoT{M,B} 

= 3~ + ': + sylog2( lj)- 8 
{ 

M + SM log2( M) - 8 

15
4
M _ 2~B + 5~ log2( i-) _ 8 

(B.26) 

for B = M 
for Af$ B < M 
for B $ t;{ 

B.4 "Windowed" Real Output IFFTs 

B.4.1 General Windowing 

Windowing mea.ns here tha.t only part of the output ha.s to he computed. 
In [11] the problem of a.n FFT with real input data. a.nd pa.rtial use of the 
output nodesis a.dressed, but here we have real output data., so tha.t method 
ca.nnot he used. A general real output IFFT is defined for all 0 $ l < M 
by 

M-1 x, = I: xk • é3'2'~~"·~ (B.27) 
k=O 

with Xk = (XM :FM)k a.nd Xl = (~M)l· 
As the problem is the inverse of the "windowed" real input FFT, here 

we should use a. Decima.tion-In-Frequency (DIF) algorithm (DIF mea.ns in 
this case also tha.t the time doma.in vector is decima.ted, but this is the 
output vector here (a.nd not the input vector, as in the FFT case)). 
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B.4.2 Radix-2 DIF Real Output (I)FFT 

A general radix-2 DIF decomposition is defined for all 0 ~ l < M/2 as 

= 

= (B.28) 

= 

(B.29) 

The total complexity of a length M IFFT of which the first B output val u es 
are needed thus is "Î.PIFFT{M, B}, where both BandMare powersof 2 

(B.30) 

The combining equations take \.Ps2{M} operations. For equation (B.28) 
weneed to add Xk + X:M k for 0 ~ k ~ M/4 (symmetry poperties are 

2-
kept ), which requires M /2 real adds. For equation (B.29) we need to add 
Xk- X:M -k' whose imaginary part equals to the imaginary part of Xk + 

2 

X:M -k' thus only M/4 additions are needed. The multiplication requires 
2 

6·( M /4-1) operations so the total number of operations, needed to combine 
two length M/2 IFFTs equals 

9M 
'-Ps2{M} =-- 6 

4 
(B.31) 

If the number B of output samples to he computed, equals the IFFT length 
M, or half ofit (M/2), then we proceed with our recursive scheme until we 



B.4. "WINDOWED" REAL OUTPUT IFFTS 

reach IFFTs of length 4, with 

This implies 

xo = R{Xo} + R{X2} + 2 · R{Xt} 

x1 = R{Xo}- R{X2} + 2 ·~{XI} 

xa = R{Xo} + R{X2}- 2 · R{Xt} 

x3 = R{Xo}- R{X2}- 2 · ~{Xt}· 

WIFFT{4,4} = 8 

WIFFT{4,2} = 6 
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(B.32) 

(B.33) 

(B.34) 

(B.35) 

(B.36) 

(B.37) 

(B.38) 

H M ~ 4B then we proceed till the stage in which 2 values per length 
M IFFT must be computed, implying that we have length 2M/ B IFFTs, 
with 

1f-l 
xo = R{Xo} + R{X~} + 2 · L R{XA:} (B.39) 

A:=l 

~-l kB 

x1 = R{Xo}-R{X1f}+2· L1R{Xk·e-1'
21r·:rn}. {B.40) 

k=l 

The above equations cost in tot al W IFFT { 2M / B, 2} opera ti ons · 

2M 3M 
WIFFT{B,2} = B +3 (B.41) 

By using the recursive scheme, we can now compute the overall com­
plexity. We have three cases, M ~ 4B, M = 2B and M = B 
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li'IFFT{M, B} 

B.S Results 

8.5.1 Gain Compared to Traditional FFTs 

In figure B.l the computational complexity of the the "windowed" FFT is 
given as a function of the block length B for three different FFT lengths 
{the solid lines). We observe a decreasing complexity as the window length 
decreases. Fora block length B = M (the right-edge of each curve), we ob­
tain the complexity of FFTs that do not exploit the windowing property. At 
costof a smallextra complexity (the rotation) we can use the "windowed" 
FFTs in the recursively computed "block" FFTs ( the dashed lines ), for an 
overlap of M - B. We see that for an increasing overlap ( decreasing B) 
complexity is reduced enormously compared to the traditional computed 
FFTs (for B = M we get the complexity of the traditional approach). 

: : : : 
5 ............................ ('"""'"'"''""""""l''""'""""""""'"""i·-......................... i ......................... . 

2 ..................... j. 

8 10 

Figure B.l: Complexity as function of Band M. 
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B.5.2 Application in Adaptive Filter: PBFDAF 

In adaptive filtering the use of "windowed" and recursive "block" FFTs 
yields a huge rednetion of the number of operations needed. Take, for exam­
ple, the Partitioned Block Frequency Domain Adaptive Filter (PBFDAF) 
of chapter 4 used as acoustic echo-canceller. In [10] the suggestion of using 
"windowed" FFTs in Frequency Domain Adaptive Filters is made. How­
ever an incorrect assumption about the resulting complexity is made, a 50% 
zero input vector does not result into a 50% saving in complexity. 

We assume to have signals sampled at 8kHz, and an echo to be cancelled 
of 250 milli-seconds (inducing a filter of at least 2000 coefficients ). Further 
we assume that the maximum allowable processing delay is 1 milli-second. 
With traditional FFTs, the lowest attainable number of operations is then 
reached for a filter length of 2004 coefficients partitioned into 167 subfil­
ters of length 12. This costs approximately 14000 operations per sample. 
Using "windowed" and recursive "block" FFTs, the smallest complexity is 
obtained for a filterlength of 2040 coefficients partitioned into 34 subfilters 
of length 60. The adaptive filter then needs approximately 8500 operations 
per sample. In both cases the block length equals 4. We see that the use 
of these FFTs reduces the number of operations needed with 40%. 

B.6 Conclusions 

The introduced new metbod for recursive computation of "block" Fast 
Fourier Transforms decreases computational complexity compared to the 
straight approach. In applications where these FFTs are the major com­
putational burden, this can leadtoa huge rednetion in overall complexity. 
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Appendix C 

Power Speetral Density 

C.l Definition of Power Speetral Density 

Consider a signaJ x[k], that represents a single realization of a wide-sense 
stationary stochastic process, with C{x[k]} = 0. The discrete-time Fourier 
transform of such a signaJ at time k is given for w E [ -1r, 1r] by 

M-1 

XM,w[k] = L x[k- m] · e-:JWm. (C.1) 
m=O 

The statistkal expectation of the squared magnitude of XM[k,w] can be 
expressed as follows 

C{IXM,w[k]!2} = C{XM,w[k] · (XM[k,w])*} 

= E {}; ~ z[k- n]· ( z[k- mJr . e-,w(n-m)} 

M-1M-1 

= L L C{x[k- n] · (x[k- m])*} · e-:JW(n-m) 

n=O m=O 
M-lM-1 

= L L Pn-m • e-Jw(n-m). 

n=O m=O 

By letting a = m - n, we rewrite the above equation as follows 

(C.2) 

M-1 I I 
C{IXM,w[k]l2

} = M • L (1- :C) ·Pa· e-:JWa (C.3) 
a=-M+l 
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which can be interpreted as the discrete-time Fourier transform of a win­
dowed autocorrelation function. Now the Power Speetral Density (PSD) of 
x[k] can be defined as 

S:x:,u; = Ji~oo ~t'{IXM,u;[k]l2} 

= 
00 

L Pa.. e-JC.Va.. 
a.=-injty 

C.2 DFTs and Non-Stationarities 

(C.4) 

By using DFTs of length M insteadof Fourier transforms, we can obtain 
discrete functions defined for 0 :$ m < L by 

M-1 

(XL[k])m = L x[k- n] · e-321ri.t (C.5) 
n=O 

(J:!f)m = ~t'{(XM[k])m · ((XM[k])*)m} 

M-1 I I = L (1- ~)·Pa.·e-321r,.iJ' 
a.=-M+l 

= 1:1 ((1- !) ·Pb+ !Pb-M) • e-ll1r~ (C.6) 
b=O 
M-1 

(.S:)m = L Pa. e-321raiJ'. (C.7) 
a=O 

In the case of non-stationary processes, the theory of the previous sec­
tion is not valid anymore. We assume that the time scale in which non­
stationarities occur in the input signals used in this thesis, is much larger 
than the DFT-length M. By appending a time index to the power spectrum 
(J:!f), we then get 

(C.8) 

where for 0 :$ b < M the autocorrelation Pb[k] = t'{x[k] · (x[k- bJ)*}. 
In practice, in reai-time systems, only a single realization is available, so 
we cannot calculate the ensemble average. When using P~[k], we will 
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therefore have to approximate the ensemble average t: by a time average.1 

In this thesis we willoften refer to e[k] as the power vector (that is not 
equal to the Power Speetral Density ). 

C.3 Circulant Matrices 

We can also find a description of P~[k] in time doma.in by inverse trans­
formation of XM[k] ® (XM[k])*, with for 0 ~ m < M 

With help of the circulant matrices in chapter 3, where it is shown that 

(C.lO) 

we obta.in 
(C.ll) 

This gives the opertunity to interpret e {~[kJ· ( ~ [k])t} as the circulant 
approximation of the autocorrelation matrix, and (rM)-l e(k] as the 
circulant approximation of the autocorrelation vector. 

1 In a wide-sense staionary process, these are eqnal. 
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Glossary 

Abbreviations 

A/D 
AEC 
AF 
ALE 
AR 
ARMA 
BFDAF 
BFDC 
BLMS 
BNLMS 
BOP 
BTDC 
BRLS 
D/A 
DBOP 
DDE 
DPBFDAF 
BOP 
DFT 
DIF 
DIT 
DSP 
ERLE 
FAEST 
FBNLMS 
FDAF 
FFT 
FIR 

Analog to Digital ( converter ). 
Acoustic Echo Cancelier. 
Adaptive Filter. 
Adaptive Line Enhancer. 
Auto Regressive. 
Auto Regressive Moving A verage. 
Block Frequency Domain AF. 
Block Frequency Domain Convolution. 
Block Least Mean Square. 
Block Normalised Least Mean Square. 
Block Orthogonal Projection. 
Block Time Domain Convolution. 
Block Recursive Least Squares. 
Digital to Analog ( converter). 
Decoupled Block Orthogonal Projection. 
Decision Directed Equalizer. 
Decoupled PBFDAF. 
Block Orthogonal Projection. 
Discrete Fourier Transform. 
Decimation In Frequency. 
Decimation In Time. 
Digital Signal Processor. 
Echo Return Loss Enhancement. 
Fast Aposteriori Error Sequential Technique. 
Frequency domain BNLMS. 
Frequency Domain Adaptive Filter. 
Fast Fourier Transform. 
Finite Impulse Response. 
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FNTF 
FTF 
IDFT 
IFFT 
IIR 
LMS 
LPF 
LSI 
MA 
MFLOPS 
MSE 
MSS 
NLMS 
NUPBFDAF 
NUPBFDC 
OP 
PBFDAF 
PBFDC 
PSD 
P/S 
RLS 
S/P 
TDC 

Fast Newton Transversa.l Filter. 
Fast Transversa.l Filter. 
Inverse Discrete Fourier Transform. 
Inverse Fast Fourier Transform. 
In:finite Impulse Response. 
Least Mean Square. 
Low-Pass Filter. 
Loughborough Sound Images. 
Moving A verage. 

GLOSSARY 

Million FLoating point Operations Per Second. 
Mean Squared Error. 
Multi Step Size. 
N orma.lised Least Mean Square. 
Non Uniform PBFDAF 
Non Uniform PBFDC 
Orthogona.l Projection. 
Partitioned BFDAF. 
Partitioned BFDC. 
Power Speetral Density 
Para.llel to Seria.l Converter. 
Recursive Least Squares. 
Seria.l to Para.llel converter. 
Time Domain Convolution. 



NOTATION 

Notation 

x 
A 

W· _, 
(1ll)a 
(X)a,b 
[k] 
(~.)f,(X)t 

(x)*,(~)*,( X)* 
(~)h ,(X)h 
® 
diag{~N} 
max{B,N} 
min{B,N} 
&{x[k]} 
LNIQJ 
fNIQl 
gcd{N,Q} 
R{X} 
U{ X} 
span{~8_1 , 

. . . ,eo} 

Signals (Lower case character ). 
Constant (Upper case character). 
Time domain vector (Lower case underlined). 
Frequency domain vector (Upper case underlined). 
Vector of length N. 
Matrices (Bold upper case .or caligraphic ). 
B x Q matrix X. 
For a square matrix the secoud dirneusion is omitted: 
M x M matrix I. 
A subscript i denotes the i'th version. 
The a'th element of 1Q. 

The a 'th element of the b'th column of X. 
Denotes the time index. 
Transpose of~' X. 
Complex conjugate of x,~' X. 
Complex conjugate transpose of~' X. 
Elementwise multiplication of two vectors. 
N x N matrix with on its main diagonal ~N. 
Maximum of B and N. 
Minimum of B and N. 
Ensemble average of x[k]. 
The smallest integer, not smaller than NI Q. 
The largest integer, not larger than NI Q. 
Greatest common divisor of N and Q. 
Real part of X. 
Imaginary part of X. 
B~dimensional hyperpla.ne spanned by ~B-l till ~0 • 
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List of U sed Symbols 

g Projection parameters in BOP. 
A Update part block length. 
Ap N ormalization block length. 
a Adaptation constant. 
B Filter part block length. 
Bp Relevant input signal autocorrelation length. 
f3 Forgetting factor in power estimation. 
C Circulant matrix. 
,d[k] Difference of filter and echo-path impulse response . 
.du[k] Part of !l[k] parallel to input signal hyperplane . 
.dJ.[k] Part of !l[k] perpendicular to input signal hyperplane. 
D Computation processing delay. 
Droax Maximum allowable processing delay. 
nN Rotatïon matrix . 
.1. Algorithm processing delay. 
d Delay element in figures. 
e[k] Desired signal (echo in AEC). 
ê[k] Estimate of desired signal. 
ë[k] Desired signal corrupted with s[k] • 
f. Threshold in inverse varianee and power estimate. 
/s Sample rate. 
:F Fourier transform matrix. 
OF Number of filter-part sub-filters. 
Ui Number of sub-filters in i'th sub-set. 
Uu Number of update-part sub-filters. 
G Number of sub-sets in NUPBFDC. 
; A/B, sample rate quotientin D- and NU-PBFDAF. 
\1 Gradient of MSE-surface. 
l![k] Impulse response of echo-path. 
I ldentity matrix. 
Î[k] Approximation error matrix. 
J Imaginary unit. 
J Mirror matrix. 
k Time index. 
K Block time index. 
I Block time index. 
L Update part FFT length. 
Lp Normalization FFT length. 



LIST OF USED SYMBOLS 193 

À Normalization part block index. 
M Filter part FFT length. 
T Mean Squared Error. 
T min Minimum Mean Squared Error. 
9 Memory occupation. 
N Number of filter coefficients. 
}>t Place of Normalization . 
.Q,O All zero vector, matrix. 
n Window positioning length. 
p *[k] Cross-correlation vector of x and ë. :....zo,e 
.fx[k] Normalization (power) vector . 
..t:[k] Estimate of .fx[k] 

P[k] Intermediate variabie in estimation of ..ê;1
[k]. 

\If Complexity mearure (real multiplications per sample). 
q Q / B, number of delays in series of delays. 
Q Filter part partition length. 
r[k] Residual signal. 
'R.x[k] AutO*correlation matrix of x[k]. 
'f4[k] Circulant approximation of 'Î4[k]. 
~[k] Exact FD implementation of 'k{k]. 
'Î4[k] Approximation of autocorrelation matrix. 
AN 

1lx,q[k] DBOP decorrelation matrix. 
Pi[k] Autocorrelation, Pct[k] = t'{x[k] • (x[k- a])*}. 
Pi[k] ('k[k])ct-b = Plct-&l[k]. 
Pi[k] Approximation of Pi[k] 
s[k] Near end signal. 
S Sum of subfilter lengths. 
Bx,w Power Speetral Density of x[k] 
u;[k] Varianee of x[k]. 
ç[k] Intermediate variabie in estimation of u;2 [k]. 
T Sample interval. 
r Extra deiays in NUPBFDC. 
Uc·N, ur•NWindowing matrices. 
V N Windowing matrix. 
w Frequency domain variabie (between -7r and 1r). 
w[k] Adaptive filter vector. 
w[k] AF vector extended with zeroes. 
x[k] Input signal (Far end signal). 
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XM,w[k] 
X[k] 
X[k] 
x i 
e ..... --
z 

Discrete-time Fourier transfarm of x[k] 
Input signa! matrix. 
Circulant extension of X[k]. 
Example of X[k]. 
Some small number, e <:: 1. 

GLOSSARY 

3 + Uu length L FFTs are neerled in NUPBFDAF . 
Normalized residual signa! vector. 
Z /A, number of delays in series of delays. 
Update part partition length. 
N ormalization partition length. 
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Figures 

XM[~tB] wQ[k] 

fB ~ 1Q 
z.Q[k] 

1.1 1.2 1.3 

XM[~tB] x[k] x[k] 

~w[k] <}--w(k] -~WM(KB] 
e[k] e[k] 

1.4 1.5 

XM[KB] z.B[kJ 

~WM(KB] fR w8 [k] 

EM[nB] e[k] 
1.7 1.8 

1.1: Vector with length B. 
1.2: Discontinued vector ( discarding of samples). 
1.3: Mirror operation ~Q[k] = JQ · wQ[k]. 
1.4: Scalar multiplication e[k] = x[k] · w[k]. 
1.5: Scalar addition e[k] = x[k] + w[k]. 

EM[~tB] 

~B[k) 

~Q 
!lB[k] 

1.6: Elementwise addition EM[nB] = WM[nB] - XM[~tB]. 
1.7: Elementwise multiplication EM[nB] = WM[~tB] ® XM[~tB]. 
1.8: Convolution e[k] = (z.8 [k])t . w8 [k]. 
1.9: Multiplication by scalar !l8 [k] =a· ~8 [k]. 

1.6 

1.9 
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xM[k] x(k] 

0 ctJ 
(XM[k])* 

1.1 
x[k- 1] 

2.2 

~B[";B] z.M[";B] 

$ 
JL, 

I DFTM I 
~ 

z.B[(";- q)B] 2.4 XM[";B] 
2.5 

z.B[";B] r[k- B + 1] 

$ ~z"[KB] 
z.M[";B] 

2.7 

2.1: Complex conjugation. 
2.2: One sample (scalar) delay. 
2.3: One sample vector delay. 
2.4: Series of q one sample vector delays. 
2.5: DFT XM[";B] =:FM. z.M[";B]. 
2.6: IDFT ~M[";B] = (:FM)-1 • XM[";B]. 
2.7: Overlap z.M[";B] = ( ... (~B[";B])t )t. 

2.8 

2.8: P /S converter :c8 [";B] = ( r[";B- B + 1] 

2.9: S/P converter ~8[";B] = ( x[";B- B + 1] 

GLOSSARY 

~B[";B] 

@ 
~8((";- l)B] 

XM[";B] 

$ 
z.M[";B] 

~z[k] 
z.B[";B] 

r[";B] )t. 
x[";BJ ( 

2.3 

2.6 

2.9 
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Co~~~ and Sp~ :~ 
. . . '1[/ 

3.3 

3.1 

x[k] 

1 r z[k] 

y[k] _j. 
3.4 

3.6 

3.1: Compose and Split operation. 
3.2: Hold operation yM[,..B] = ~M[l,..B/AJA]. 
3.3: Decision element. 
3.4: Switch. 
3.5: Down sampler yM[JA] = ~M[(l· Af B)B]. 

~M[lA] 

$ 
J!M[,..B] 

~M[,..B] 

~ 
J!M[lA) 

x[k] 

cp 
e[k] 

3.6: Matrix multpli~tion y8 [,..B] = 2a('R.8 [,..B])-1.r8 [,..B]. 
3.7: Filter operation e[k] ~ ( x[k- N + 1] . · · x[k] ) ·l:!N. 
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STELLINGEN 

Behorende bij het proefschrift 

Real Time Realization Concepts of Large Adaptive Filters 

door G.P.M. Egelmeers 

1. Door het ontkoppelen van parameters in algoritmen voor adap­
tieve :filters kunnen belangrijke eigenschappen zoals berekenings­
vertraging, berekeningscomplexiteit en convergentiegedrag veel 
beter op de bedoelde toepassing worden afgestemd. 
(Bron: [1]) 

2. De berekeningscomplexiteit van convoluties kan sterk geredu­
ceerd worden door gebruik te maken van niet uniforme partitie 
technieken in het frequentie domein, zonder dat dit leidt tot een 
(grote) berekeningsvertraging. 
(Bron: [1]) 

3. De concessies die aan gestelde randvoorwaarden gedaan wor­
den om de berekeningscomplexiteit van een akoestische echo 
compensator zodanig laag te krijgen dat deze op één signaal­
processor kan worden gerealiseerd, zijn als gevolg van de in dit 
proefschrift geïntroduceerde technieken niet langer nodig. 
(Bron: [2, 1]) 

4. De aanpassing van de coefficienten in een transversaal filter 
zoals bijvoorbeeld toegepast in akoestische echo compensatoren, 
levert als gevolg van de lengte van dit transversaal filter een 
dusdanig grote hoeveelheid ruis op, dat moet worden gezocht 
naar een andere manier om de coefficienten aan te passen. 

5. De uiterlijke eenvoud van de formules die het Least Mean Square 
(LMS) algoritme beschrijven houdt niet in dat zijn berekenings 
complexiteit laag is, of dat het gedrag van dit algoritme op een­
voudige wijze te analyseren is. 
(Bron: [3, 4]) 



6. De berekeningscomplexiteit van gedeeltelijk overlappende FFTs 
(snelle Fourier transformaties) kan worden gereduceerd door 
gebruik te maken van deze overlap. 
(Bron: [1], appendix B) 

7. Het feit dat de besturen van studentenverenigingen vaak voor 
een deel bestaan uit mensen die bestuurslid geworden zijn om 
hun Curriculum Vitae een mooier aanzien te geven, bevordert 
niet bepaald de kwaliteit van deze besturen. 

8. De diversiteit in te varen nummers bij het onderdeel roeien 
op de olympische spelen en de wereldkampioenschappen dient 
(nog verder) beperkt te worden (tot b.v. 1x, 2-, 4x en 8+ ). 
Dit bevordert de overzichtelijkheid en aantrekkelijkheid voor 
niet roeiers en voorkomt dat roeiers elkaars concurrentie gaan 
ontlopen door in andere nummers uit te komen. 

9. Een roeier vergroot zijn kans om voor de nationale selectie te 
worden uitgenodigd door zich in de omgeving van Amsterdam 
te vestigen. 

10. De eerste twee jaren van alle universitaire studies dienen te 
worden samengevoegd tot een beperkt aantal verschillende twee 
jarige "onderbouw" studies. 

11. De gewichtslimiet die verbonden is aan het uitkomen in de lichte 
categorie bij roeien nodigt zwaardere mensen uit tot het nemen 
van extreme maatregelen om gewicht te verliezen, wat in ab­
solute zin tot prestatieverlies leidt en vaak ook nog de gezond­
heid bedreigt. Dit is in tegenspraak met de grondbeginselen 
van- sport. 

12. Het begeleiden van vrouwelijke sporters vereist een andere aan­
pak dan de begeleiding van mannelijke sporters. Sociale as­
pecten spelen bij de eerstgenoemden vaak een veel grotere rol 
dan bij de mannen, waar prestatiedrang meestal de overhand 
heeft. 

13. De aanleg van wegen en kabelbanen in het hooggebergte bedreigt 
behalve het milieu ook het plezier van de bergwandelaar. 



14. Het uitvaardigen van een rookverbod in openbare ruimtes (met 
name de liften en toiletten) blijkt vrijwel geen effect te hebben 
als daar geen sanctie tegenover staat. De (gevulde) asbakken en 
het permanente rookgordijn in diverse ruimtes in de TUE (b.v. 
hal E-Hoog) doen niet vermoeden dat het rookverbod zoals dat 
staat aangegeven bij de hoofdingang serieus genomen wordt. 

15. Het vervullen van de dienstplicht in de laatste lichting heeft als 
voordeel dat de betrokkenen zichzelf waarschijnlijk niet zullen 
vervelen. Het opruimen van de te sluiten kazernes zal voldoende 
bezigheden verschaffen. 
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