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A B S T R A C T

Many complex mechatronic systems consist of multiple interconnected dynamical subsystems, which are
designed, developed, analyzed, and manufactured by multiple independent teams. To support such a design
approach, a modular model framework is needed to reduce computational complexity and, at the same time,
enable multiple teams to develop and analyze the subsystems in parallel. In such a modular framework,
the subsystem models are typically interconnected by means of a static interconnection structure. However,
many complex dynamical systems exhibit position-dependent behavior (e.g., induced by translating interfaces)
which cannot be captured by such static interconnection models. In this paper, a modular model framework is
proposed, which allows to construct an interconnected system model, which captures the position-dependent
behavior of systems with translating interfaces, such as linear guide rails, through a position-dependent
interconnection structure. Additionally, this framework allows to apply model reduction on subsystem level,
enabling a more effective reduction approach, tailored to the specific requirements of each subsystem.
Furthermore, we show the effectiveness of this framework on an industrial wire bonder. Here, we show that
including a position-dependent model of the interconnection structure (1) enables to accurately model the
dynamics of a system over the operating range of the system and, (2) modular model reduction methods
can be used to obtain a computationally efficient interconnected system model with guaranteed accuracy
specifications.
. Introduction

Mechatronic systems often consist of multiple interconnected dy-
amical subsystems, which are designed individually and in parallel.
n important subclass of such complex engineering systems can be
odeled as multi-body systems consisting of flexible subsystems trans-

ating with respect to each other, in short, referred to as systems with
ranslating interfaces. Examples of these systems are industrial wire
onder machines, printers and high-precision motion stages. Accurate,
ow-order models for the prediction of the motion and structural vibra-
ions of such systems are essential to support model-based (controller)
esign and to support model-based diagnostics algorithms. Obtaining
hese models is challenged by (1) the large-scale nature of the models,
2) the interconnected nature of these systems, and (3) the position-
ependent non-linearity induced by the translating interfaces, which
s illustrated with an example in Fig. 1. The objective of this paper is
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to provide a modular modeling approach that also supports employing
modular complexity reduction techniques such that low-order models
with guaranteed accuracy specifications can be constructed that are
accurate on the systems’ entire operating range.

A common engineering approach is to construct a single high-
order finite element (FE) model [1], containing all subsystems, to
analyze the dynamical behavior of the system as a whole. However,
to accommodate for increasing performance and accuracy demands,
mechatronic systems are becoming increasingly complex. To enable the
design of such complex system models, often, a modular approach is
used, where the high-order system model is subdivided into multiple
subsystem models that are interconnected through an interconnection
structure. This enables the development and analysis of the subsystems
in parallel by specialized design teams, before integrating them in the
interconnected system design. In addition, such modular models also
vailable online 24 June 2024
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Fig. 1. Example of an interconnected system where the dynamic behavior from input
to output 𝑦 is position-dependent, i.e., depends on 𝑥.

llow the reduction of the (computational) complexity of the intercon-
ected system model. Such a modular modeling approach is commonly
sed in the systems and control field, e.g., [2,3]. Furthermore, in
he structural dynamics field, dynamic substructuring techniques [4,5]
nd frequency-based substructuring methods [6] are also well-known
odular modeling approaches.

Nowadays, such structural dynamics models of complex systems
ay contain millions of degrees of freedom (DOF), which makes their
sage computationally infeasible. Therefore, the application of model
rder reduction (MOR) techniques is necessary to reduce the computa-
ional costs of evaluating the dynamical characteristics of these systems,
elated to specific input–output combinations and often in a certain fre-
uency range of interest. Commonly used MOR techniques include, for
nstance, balancing methods [7], moment matching techniques [8–10],
nd Component Mode Synthesis (CMS) methods [11–13].

There exist two main approaches to reduce the complexity of inter-
connected system models: (1) MOR on the level of the interconnected
system as a whole and (2) the reduced-order model (ROM) of each
subsystem model is obtained individually without modifying the in-
terconnection structure, after which the subsystem ROMs are inter-
connected. In contrast to the interconnected system level approach,
a modular approach allows to apply different reduction techniques
to each individual subsystem, tailored to the specific requirements
of each subsystem [14]. Furthermore, the modular approach allows
to make changes to individual subsystems without having to recon-
struct the complete reduced-order model of the interconnected system.
In this case, only the ROMs of the involved subsystems need to be
reconstructed. Reduction on the level of interconnected system as a
whole also typically does not preserve the interconnection structure.
To address this challenge, structure-preserving methods have been
developed [2,15–17]. Furthermore, a modular MOR approach provides
a significant computational advantage, as it is more efficient to apply
MOR to multiple smaller models compared to applying MOR on a single
high-order interconnected model.

However, for modular MOR, predicting how the errors, introduced
by the reduction of the subsystems, propagate through the ROM of the
interconnected system as a whole is not trivial. Therefore, if subsys-
tem models are reduced without considering the effect of subsystem
modeling errors on the interconnected ROM, these errors may cause
given frequency-response function (FRF) accuracy requirements of the
interconnected ROM to be violated [18]. In [19], a mathematical
framework is presented that enables to relate given, (external input to
external output) FRF accuracy requirements of the ROM of the inter-
connected system to the FRF accuracy requirements of the subsystem
ROMs. A necessary prerequisite for such approaches is the availability
of a high-fidelity, modular and linear model accurately describing the
(structural) dynamics of the system.

In many (mechatronic) applications, however, the input-to-output
behavior is typically position-dependent, i.e., nonlinear, because their
functionality requires that modules of the system translate with re-
spect to each other. Examples of such systems include high-precision
motion stages (e.g., gantry (wafer) stages, wire bonders), machine
tools (e.g., CNC machines, drilling equipment), medical equipment
(e.g., MRI-scanners, X-ray machines) or Cartesian robots. Models incor-
porating the position-dependent behavior of the system are crucial for
2

Fig. 2. Comparison of modeling workflows for position-dependent system models
with, on the left, the standard static interconnection structure. On the right, the
proposed position-dependent interconnection structure is given, which significantly
reduces required effort for changing the operating points.

the purpose of designing the mechatronic system such that it performs
according to specifications over the entire operating range of the sys-
tem [20,21]. A common approach is to construct linearized models at
certain operating points. These models can, however, only represent the
dynamics locally at a certain position. Namely, if the subsystem posi-
tions change with respect to each other, then the subsystem models and
the interface models need to be connected at different locations. This
has immediate consequences for the (modular) complexity reduction of
the subsystem models, since these typically highly depend on the input-
and output-variables with which they interconnect to other subsystem
models and the interface models. These challenges typically make the
modeling (and complexity reduction) tasks highly time-consuming for
the engineer and computationally expensive.

As a solution, existing methods to model position-dependent be-
havior of specific complex dynamic systems more efficiently include a
position-dependent dynamic substructuring method for machine tools,
specifically [22,23]. However, there is a need for general methods to
construct reduced-order models of position-dependent interconnected
systems with translating interfaces, such that, firstly, the models can
accurately describe the dynamics of systems in the entire operating
range of the systems and, secondly, FRF accuracy requirements of the
interconnected system ROMs are guaranteed.

The main contribution of this paper is the development of a general
modular model framework for the structural dynamics of systems with
translating interfaces (such as, e.g., linear guide rails), that enables to
incorporate a position-dependent interconnection structure. This is ac-
complished by introducing fixed grids of virtual interconnection points
on the interfaces between subsystems, to be able to connect physical
inputs and outputs. Physical characteristics (such as, for example, stiff-
ness), specific to each interconnection, are interpolated between two
adjacent virtual interconnection points on each interface, depending on
their relative position to the physical interconnection. This eliminates
the need to remodel and reapply MOR on the subsystem models when
evaluating different operating points, saving a significant amount of

manual and computational effort. The improved modeling workflow in
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this framework, for systems that exhibit position-dependent behavior,
is illustrated in Fig. 2.

Moreover, as an additional contribution of this paper, this position-
dependent modeling approach is used in combination with the top-
down modular MOR framework, described in [19], which also relies
on a modular model framework where the subsystem models are inter-
connected through an interconnection structure. The method developed
in [19], based on [24], guarantees the required FRF accuracy of the
interconnected ROM based on the subsystem ROM FRFs accuracy. This
leaves the position-dependent interconnection structure intact, such
that the ROM of the interconnected system can be used to evaluate all
operating points of interest. As a result, we provide a computationally
efficient modular MOR framework for interconnected systems with
position-dependent dynamics.

Finally, to evaluate the effectiveness of the proposed framework
on real-world applications, a case study on an industrial wire bon-
der machine (WBM) is presented in this paper. A WBM, consisting
of multiple modules/stages, makes wired interconnections between a
semiconductor die and its packaging. In this case study, we show that
including a position-dependent interconnection structure (1) enables to
accurately model the dynamics of the WBM over the operating range
of the system and, (2) modular model reduction methods guaranteeing
assembly FRF accuracy specifications can still be used to obtain a
computationally efficient model.

This paper is organized as follows. Section 2 gives the modular
model framework of systems with a static interconnection structure. In
Section 3, we show how this framework can be extended to enable a
position-dependent interconnected system model. In Section 4, we con-
cisely present the modular model reduction method. The effectiveness
of the proposed position-dependent modeling and modular reduction
framework is evaluated by means of a case study on an industrial wire
bonder in Section 5. Finally, the conclusions are given in Section 6.

2. Modular model framework

In this section, we introduce the modular modeling framework that
can be used for the purpose of decreasing computational costs, im-
proving interpretability, and enabling an effective, structure-preserving
model reduction approach. To obtain such a modular model, complex
high-order (mechanical) systems can be subdivided into 𝑘, less com-
plex, high-order subsystems 𝑗 ∈ {1,… , 𝑘}, the dynamics of which can
be described as second-order ordinary differential equations (ODE) of
the form

𝑀𝑗𝑞𝑗 (𝑡) +𝐷𝑗 �̇�𝑗 (𝑡) +𝐾𝑗𝑞𝑗 (𝑡) = 𝐹𝑗 (𝑡), (1)

where 𝑀𝑗 , 𝐷𝑗 , and 𝐾𝑗 are the mass, damping and stiffness matrices of
the respective subsystems with index 𝑗. The generalized coordinate and
force vectors are denoted by 𝑞𝑗 (𝑡) and 𝐹𝑗 (𝑡), respectively. If we consider
state 𝑥𝑗 (𝑡) ∶=

[

𝑞⊺𝑗 (𝑡), �̇�
⊺
𝑗 (𝑡)

]⊺
and input 𝑢𝑗 (𝑡) ∶= 𝐹𝑗 (𝑡), we can formulate

(1) into (descriptor) state-space form,

𝐸𝑗 �̇�𝑗 (𝑡) = 𝐴𝑗𝑥𝑗 (𝑡) + 𝐵𝑗𝑢𝑗 (𝑡)

𝑦𝑗 = 𝐶𝑗𝑥𝑗 (𝑡) +𝐷𝑠𝑠,𝑗𝑢𝑗 (𝑡),
(2)

of order 𝑛𝑗 , i.e. 𝐴 ∈ R𝑛𝑗×𝑛𝑗 , with 𝑛𝑗 being the number of states of
subsystem 𝑗, with inputs 𝑢𝑗 and outputs 𝑦𝑗 of dimensions 𝑚𝑗 and 𝑝𝑗 ,
respectively, and where

𝐸𝑗 =
[

𝐼 0
0 𝑀𝑗

]

, and 𝐴𝑗 =
[

0 𝐼
−𝐾𝑗 −𝐷𝑗

]

. (3)

In the input matrix 𝐵𝑗 , the DOFs corresponding to the external inputs
and interconnections with other subsystems are selected. In the output
matrix 𝐶𝑗 , the DOFs corresponding to the external outputs and inter-
connections with other subsystems are selected, and 𝐷𝑠𝑠,𝑗 is a direct
feedthrough matrix. In the Laplace domain, the transfer functions 𝐺 (𝑠),
3

𝑗

Fig. 3. Block diagram representation of the interconnected system 𝐺𝑐 (𝑠) with subsystem
models 𝐺1 … , 𝐺𝑘, and the interconnection matrix .

epresenting the input–output behavior of (2), are defined according to

𝑗 (𝑠) = 𝐶𝑗
(

𝑠𝐸𝑗 − 𝐴𝑗
)−1 𝐵𝑗 +𝐷𝑠𝑠,𝑗 , (4)

ith 𝑠 ∈ C as the Laplace variable. The subsystem transfer functions
re collected in a block-diagonal transfer function

𝑏(𝑠) = diag
(

𝐺1(𝑠),… , 𝐺𝑘(𝑠)
)

, (5)

ith inputs 𝑢𝑏 =
[

𝑢⊺1,… , 𝑢⊺𝑘
]⊺ and outputs 𝑦𝑏 =

[

𝑦⊺1,… , 𝑦⊺𝑘
]⊺ of dimen-

ions 𝑚𝑏 ∶=
∑𝑘

𝑗=1 𝑚𝑗 and 𝑝𝑏 ∶=
∑𝑘

𝑗=1 𝑝𝑗 , respectively.
Next, the interaction between components is defined in order to

erive the model of the interconnected system. One way to achieve this
s by using a modular model framework [2,25], which is illustrated in
ig. 3. The subsystem models are interconnected according to

𝑢𝑏
𝑦𝑐

]

= 
[

𝑦𝑏
𝑢𝑐

]

∶=
[

11 12
21 22

] [

𝑦𝑏
𝑢𝑐

]

, (6)

where 𝑢𝑏 and 𝑦𝑏 are used to connect the subsystems with each other, 𝑢𝑐
and 𝑦𝑐 are the external 𝑚𝑐 inputs and 𝑝𝑐 outputs of the interconnected
system, and  is the (static) interconnection matrix.1 The interactions
between inputs and outputs of the subsystems are defined in 11. The
inputs and outputs of the subsystems, that are chosen as external inputs
and outputs, are selected in 12 and 21, respectively. Here, 22 can be
seen as a direct feedthrough term from the external inputs to external
outputs. Note that in many practical applications, the latter term is
zero. The upper linear fractional transformation (LFT) of 𝐺𝑏(𝑠) and ,
defined as

𝐺𝑐 (𝑠) = 21𝐺𝑏(𝑠)
(

𝐼 −11𝐺𝑏(𝑠)
)−1 12 +22, (7)

defines the transfer function 𝐺𝑐 (𝑠) of order 𝑛 ∶=
∑𝑘

𝑗=1 𝑛𝑗 from the
external inputs 𝑢𝑐 to the external outputs 𝑦𝑐 of the interconnected
system, see also Fig. 3.

3. Position-dependent modular model framework

In many dynamical systems, consisting of multiple interconnected
subsystems, the subsystems are interconnected through translating in-
terfaces, such as linear guide rails, to accommodate translation in a
single direction. The interconnections between the subsystems with
these translating interfaces are often represented by translational spring
elements [26], which for instance may model the stiffness of rolling
elements in the linear guide rails. In the standard framework, as
visualized in the left part of Fig. 2, the (inputs and outputs of the)
subsystem models 𝐺𝑗 need to be reconstructed when the operating
point is changed, after which the (momentary) interconnected system is
constructed by interconnecting the subsystem models through a static
interconnection matrix , as illustrated in Fig. 5(a). This process needs

1 In case the external inputs and outputs are directly connected to a
ubsystem input and output, 𝑢𝑐 and 𝑦𝑐 contain identical elements in 𝑢𝑏 and
𝑦 , respectively.
𝑏
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Fig. 4. Illustration of an interconnection structure between two arbitrary subsystems
𝑗 and 𝓁 with a translating interface with (a) (physical) interconnection points for a
specific operation point, and (b) position-dependent approach with a fixed grid of
virtual interconnection points. Filled markers indicate virtual interconnections points
that are active at a specific operating point, and used to interpolate the characteristics of
each interconnection. Empty markers indicate currently inactive interconnection points.

to be repeated every time the operating point is changed (leading to
a different  matrix) which makes such an approach computationally
prohibitive in practice.

The physical interconnection points are continuously sliding along
the interfaces and hence do not always coincide with the input–output
pairs of the subsystem models, which are typically defined on dis-
crete (and fixed) grid points at the interfaces. Therefore, for this class
of position-dependent systems, we propose a novel method to con-
struct the position-dependent model �̄�𝑐 (where the bar reflects that
position-dependent nature of the model). To achieve this, we introduce:

1. Subsystem models �̄�𝑗 with fixed, virtual interface points.
2. A position-dependent interconnection matrix ̄.

Here, the key idea is to approximate the characteristics of each inter-
connection (the points at which the interconnection is active move as
the bodies related to the translating interface move with respect to each
other) by interpolation of the characteristics of connections, between
fixed virtual interconnection points.

These virtual interconnection points are placed on a pre-defined grid
along each substructure interface, as illustrated in Fig. 4(b). In this way,
the subsystem models �̄�𝑗 are fixed for all operating points of the system
while the interconnection matrix ̄ is position-dependent.

3.1. Constructing the position-dependent modular model

In the proposed position-dependent framework, the (inputs �̄�𝑗 and
outputs �̄�𝑗 of the) subsystem models �̄�𝑗 for all 𝑗 ∈ {1,… , 𝑘} remain
identical for changing operating points and are connected through a
position-dependent interconnection matrix ̄, given by
[

�̄�𝑏
�̄�𝑐

]

= ̄
[

�̄�𝑏
𝑢𝑐

]

∶=
[

̄11 12
21 22

] [

�̄�𝑏
𝑢𝑐

]

. (8)

Here, the subsystem inputs �̄�𝑗 and outputs �̄�𝑗 for all 𝑗 ∈ {1,… , 𝑘} are
combined into �̄�𝑏 and �̄�𝑏 in the same way as 𝑢𝑏 and 𝑦𝑏 are constructed.
Note that interconnection matrices 12, 21 and 22 are not affected
by the position-dependent framework described in this section. Fur-
thermore, a position-dependent transfer function from 𝑢𝑐 to �̄�𝑐2 of the
interconnected system �̄�𝑐 can be constructed, defined by

�̄�𝑐 (𝑠) = 21�̄�𝑏(𝑠)
(

𝐼 − ̄11�̄�𝑏(𝑠)
)−1 12 +22, (9)

as illustrated in Fig. 5(b).

2 The outputs �̄�𝑐 and 𝑦𝑐 only differ in definition to be able to later compare
the difference in the dynamics of the static and position-dependent models.
4

t

Fig. 5. Block-diagram representation of the interconnected system (a) 𝐺𝑐 , i.e., with
static interconnection matrix , and (b) �̄�𝑐 , i.e., with position-dependent interconnec-
tion matrix ̄.

Fig. 6. Representation of a single physical interconnection point, interconnecting two
arbitrary subsystems 𝑗 and 𝓁, with adjacent (i.e., active) virtual interconnection points
on each side.

The position-dependent interconnection matrix ̄11 is given by the
um of all interface interconnection matrices, defined by

̄ 11 =
𝑛𝑖
∑

𝑖=1
̄(𝑖)

11. (10)

Here, the interconnection between two subsystems at each interface
𝑖 ∈ {1,… , 𝑛𝑖}, where 𝑛𝑖 denotes the total number of interfaces in the
system, can be modeled as an interface interconnection matrix ̄(𝑖)

11,
which is defined by

̄(𝑖)
11 =

𝑛𝑖,𝑠
∑

𝑠=1
̄(𝑖,𝑠)

11 , (11)

i.e., as a summation of the spring interconnection matrix ̄(𝑖,𝑠)
11 of each

physical spring 𝑠 ∈ {1,… , 𝑛𝑖,𝑠} at this interface, where 𝑛𝑖,𝑠 is the number
of springs at interface 𝑖. This single spring interconnection matrix ̄(𝑖,𝑠)

11
is given by

̄(𝑖,𝑠)
11 = 𝑃 (𝑖,𝑠)

𝑢 ̂(𝑖,𝑠)
11 𝑃 (𝑖,𝑠)

𝑦
⊤ ∈ R𝑚𝑏×𝑝𝑏 , (12)

where 𝑃 (𝑖,𝑠)
𝑢 ∈ R𝑚𝑏×4 and 𝑃 (𝑖,𝑠)

𝑦 ∈ R4×𝑝𝑏 are permutation matrices that
define which virtual interconnection points are active. Entry (𝑓, 𝑔) of
𝑃 (𝑖,𝑠)
𝑢 is defined by

𝑃 (𝑖,𝑠)
𝑢,(𝑓,𝑔) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1, if 𝑔 = 1 and �̄�(𝑓 )𝑏 corresponds to �̄�(𝛼)𝑗

1, if 𝑔 = 2 and �̄�(𝑓 )𝑏 corresponds to �̄�(𝛽)𝑗

1, if 𝑔 = 3 and �̄�(𝑓 )𝑏 corresponds to �̄�(𝛼)𝓁

1, if 𝑔 = 4 and �̄�(𝑓 )𝑏 corresponds to �̄�(𝛽)𝓁

0, otherwise.

(13)

ere, �̄�(𝛼)𝑗 , �̄�(𝛽)𝑗 , �̄�(𝛼)𝓁 and �̄�(𝛽)𝓁 , are the nearest virtual interface points to

he physical spring 𝑠 on the interconnected subsystems 𝑗 ∈ {1,… , 𝑘}
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and 𝓁 ∈ {1,… , 𝑘}, as illustrated in Fig. 6, and permutation matrix 𝑃 (𝑖,𝑠)
𝑦

s defined equivalently to define the active outputs �̄�𝑏.
Furthermore, the elementary single spring interconnection matrix

̂ (𝑖,𝑠)
11 is given by

̂ (𝑖,𝑠)
11 = 𝑄(𝑖,𝑠)

[

−𝑘(𝑖,𝑠)𝑠 𝑘(𝑖,𝑠)𝑠
𝑘(𝑖,𝑠)𝑠 −𝑘(𝑖,𝑠)𝑠

]

𝑄(𝑖,𝑠)⊤ ∈ R4×4, (14)

here 𝑘(𝑖,𝑠)𝑠 is the translational stiffness of the specific physical spring
nd

(𝑖,𝑠) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑑(𝛼)𝑗

𝑑(𝛼)𝑗 +𝑑(𝛽)𝑗
0

𝑑(𝛽)𝑗

𝑑(𝛼)𝑗 +𝑑(𝛽)𝑗
0

0
𝑑(𝛼)
𝓁

𝑑(𝛼)
𝓁

+𝑑(𝛽)
𝓁

0
𝑑(𝛽)
𝓁

𝑑(𝛼)
𝓁

+𝑑(𝛽)
𝓁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R4×2. (15)

he linear interpolation matrix 𝑄(𝑖,𝑠) determines how the interconnec-
ion between the interface points is distributed, based on the distances
o the physical spring locations, given by 𝑑(𝛼)𝑗 , 𝑑(𝛽)𝑗 , 𝑑(𝛼)𝓁 , and 𝑑(𝛽)𝓁 , as
llustrated in Fig. 6. With 𝑃 and 𝑄, the position-dependent behavior
f the system is described. Note that this approach, for a single system
osition, is similar to typical approaches used when dealing with Finite
lement non-conforming meshes [27].

emark 1. In practice, for different positions of the subsystems, ̄11
s a function of 𝑃 (𝑖,𝑠) and 𝑄(𝑖,𝑠), as 𝑃 (𝑖,𝑠) determines which virtual inter-
onnection points are active and 𝑄(𝑖,𝑠) determines the extent in which
hese points are active. These matrices can be obtained automatically,
s both 𝑃 (𝑖,𝑠) and 𝑄(𝑖,𝑠) are determined only by the relative position
etween the physical and virtual interconnection points. However, as
n arbitrary number of virtual interconnection points can be selected
nd their positions can also be arbitrarily selected, it is not possible to
rovide a general position-dependent matrix formulation for ̄11 given

any position.

Summarizing, with this framework, the position-dependent inter-
connection matrix ̄11 can approximate the behavior of an arbitrary
umber of physical springs 𝑛𝑖,𝑠 on an interface 𝑖 that are between vir-

tual interface points. With ̄11, the position-dependent interconnected
system model �̄�𝑐 as in (9) can be obtained.

3.2. Accuracy of the position-dependent model

As the position-dependent model �̄�𝑐 uses interpolation (see (14),
(15)) between a grid of virtual interconnection points to obtain a model
of the physical interconnection between subsystems, a modeling error
can be introduced. The size of this modeling error is dependent on
several factors, including:

• The number of virtual interconnection points: If the number
of virtual interconnection points increases, the distance between
physical and virtual interconnection points decreases, which will
typically lead to a decrease in modeling error. However, as al-
ready mentioned, increase of the number of virtual interconnec-
tion points also leads to an increase in complexity of the model,
as the number of (virtual) inputs and outputs of the subsystems
increases. This introduces a trade-off between accuracy and com-
plexity of the model. In Section 5, we will address this trade-off on
an industrial use case. It will be demonstrated that already with a
relatively low number of virtual interconnection points, the error
decreases quickly.

• The stiffness of the subsystems: The ratio between stiffness of
the subsystems and the interface stiffness influences the accuracy
of the position-dependent modeling approach. If this ratio is low,
5

the interpolation using the virtual points can limit the accuracy
of the model. If this ratio is high (as in the limit case for rigid
bodies), the error introduced by the position-dependent modeling
goes to zero. This is demonstrated by a simulation example, given
in Appendix. We show that as the stiffness of the subsystems is
increased, the difference in the input-to-output behavior between
the models, converges to zero, regardless of the number of virtual
interconnection points per interface in the position-dependent
model.

Another factor influencing the accuracy is the total stroke length be-
tween the subsystems, as an increased stroke length generally leads
to a higher position-dependency; this would typically also lead to
a higher required number of virtual interconnections points. Finally,
high-frequency eigenmodes are more prone to modeling errors using
the virtual interconnection points. Therefore, it is important to clearly
define the frequency range of interest for the model. In Section 5, these
factors will be taken into account to determine the number and location
of the virtual interconnection points on an industrial use case.

Remark 2. Note that in principle it is possible to extend the position-
dependent framework by implementing higher-order interpolation in
the interpolation matrix 𝑄(𝑖,𝑠) in (15) with the potential of reducing
the required number of virtual interconnection points. However, this
would, as a trade-off, increase the complexity of the position-dependent
interconnection matrix ̄11. Note that this consideration is in many
ways related to the decision of using linear or higher-order elements
in finite-element methods (FEM), which has been widely studied [28].

4. Modular model order reduction

In this section, we show how to apply model order reduction
to reduce the computational costs that are associated with the eval-
uation of the dynamical characteristics of the (position-dependent)
interconnected system, either 𝐺𝑐 (𝑠) or �̄�𝑐 (𝑠).

As explained in the introduction, we apply modular MOR, i.e., re-
duction on subsystem level. By doing this, the high-order subsystem
models, either 𝐺𝑗 (𝑠), or �̄�𝑗 (𝑠), of order 𝑛𝑗 are reduced to the reduced-
order subsystem models �̂�𝑗 (𝑠) and ̂̄𝐺𝑗 (𝑠), respectively, of order 𝑟𝑗 ,
where, typically 𝑟𝑗 ≪ 𝑛𝑗 . This reduction can be done using any MOR
method that can achieve accurate subsystem ROMs �̂�𝑗 (𝑠).

Next, the reduced-order interconnected system models �̂�𝑐 (𝑠) or
̂̄𝐺𝑐 (𝑠) of order 𝑟 ∶=

∑𝑘
𝑗=1 𝑟𝑗 is constructed by interconnecting the

subsystem ROMs �̂�𝑗 (𝑠) or ̂̄𝐺𝑗 (𝑠), respectively, through the same in-
terconnection matrix as used in the construction of the high-order
interconnected system. For the static  or the position-dependent ̄
interconnection matrix, the interconnected system ROMs �̂�𝑐 (𝑠) and
̂̄𝐺𝑐 (𝑠) can then simply be obtained using

�̂�𝑐 (𝑠) = 21�̂�𝑏(𝑠)
(

𝐼 −11�̂�𝑏(𝑠)
)−1 12 +22, or (16)

̂̄𝐺𝑐 (𝑠) = 21
̂̄𝐺𝑏(𝑠)

(

𝐼 − ̄11
̂̄𝐺𝑏(𝑠)

)−1
12 +22, (17)

respectively. In Fig. 7, a block-diagram representation of this approach
for the proposed position-dependent modeling structure is illustrated.

To achieve sufficiently accurate models of the reduced intercon-
nected system �̂�𝑐 (𝑠), the accuracy of the subsystem ROMs �̂�𝑗 (𝑠) needs to
be sufficient. To achieve this, the modular MOR framework introduced
in [19] is applied, which, in general terms, comprises the following
aspects:

1. The required FRF accuracy of the ROM of the interconnected sys-
tem �̂�𝑐 (𝑠) with respect to the high-order interconnected system
FRFs, i.e., from external inputs to external outputs, is determined
by the system engineers.

2. Automatically, from these interconnected system FRF accuracy
requirements, FRF accuracy requirements on the ROMs of the
subsystem �̂�𝑗 are derived using 𝜇-analysis, a methodology from
the field of robust control.
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Fig. 7. Block diagram representation of the modular model order reduction approach
the reduce the position-dependent interconnected model �̄�𝑐 (𝑠) to a reduced-order
interconnected model ̂̄𝐺𝑐 (𝑠) by reducing the order of the independent subsystem models
�̄�𝑗 (𝑠), without altering the position-dependent interconnection matrix ̄.

3. When each of the computed subsystem ROMs satisfies its respec-
tive FRF accuracy requirements, the required accuracy on the
interconnected system FRFs is guaranteed, hence allowing for a
completely modular reduction of the subsystems.

This method can also be applied to the position-dependent models
proposed in this paper to obtain accurate system ROMs ̂̄𝐺𝑐 (𝑠). How-
ever, in this case, subsystem ROM accuracy requirements need to be
validated in multiple positions of the system, as will be demonstrated
in Section 5.

The method proposed in [19] relies heavily on the computation
of FRFs of the high-order interconnected system. Computing this can
be computationally expensive, especially when this needs to be done
for many locations in the operating range of the position-dependent
system. However, with the position-dependent modeling approach pro-
posed in this paper, FRFs of the system can be cost-efficiently computed
in the entire operating range of the system. Namely, computation of
the FRF matrices is required for all subsystems �̄�𝑗 (𝑠) only once because
the FRFs of the subsystem models remain identical for every operating
point. For every operating point, the position-dependent interconnec-
tion matrix ̄11 simply needs to be obtained as described in Section 3.
Then, the FRF matrices of the interconnected system can be determined
according to (9) using computationally cheap matrix computations. In
comparison, the conventional, static approach would require interface
definition, model reduction, system assembly, and computation of the
FRF of the assembly ROM at every operating point, as is illustrated in
Fig. 2.

In the next section, we demonstrate that the position-dependent
modeling framework can be used to efficiently generate accurate linear
reduced-order models of an industrial wire bonder system over the
entire operating range.

5. Use case of an industrial wire bonder machine

To illustrate the effectiveness of the proposed framework to approx-
imate the position-dependent dynamics of an interconnected system
using a single modular model, the proposed position-dependent frame-
work is applied to a 3D-model of a wire bonder machine, which is
illustrated in Fig. 8. For the purpose of achieving a high throughput
and positioning-accuracy in the sub-micrometer range at the point of
interest, it is crucial to predict the input-to-output behavior of the
WBM’s x-, y- and z-motion both fast and accurately. An accurate, low-
complexity model for the WBM is essential to support model-based
design and to support the design and online operation of control and
diagnostic algorithms. Practice has shown, that the dynamic input-to-
output behavior of the WBM depends on the relative positions of the
flexible subsystems. Therefore, it is essential to construct a (modular)
model of the WBM that accurately describes the changing dynamic
behavior at different operating points of the stages.
6

Fig. 8. (Simplified) 3D CAD model of the AB383 wire bonder from ASMPT. The
locations of the cross-roller bearing rails are encircled in red.

Fig. 9. Top: CAD model of one-half of a cross-roller bearing rail, wherein 18
translational springs (indicated by the 18 purple lines) represent the roller bearings.
Bottom: CAD model of one-half of a cross-roller bearing rail, wherein a grid of (𝑛𝑣 = 17)
equidistant virtual interconnection points is defined on each interface.

5.1. Modeling of the wire bonder machine

In this model, the wire bonder machine consists of three subsys-
tems/modules: (1) the machine-frame, which is rigidly attached to the
fixed-world at eight mounting points, (2) the x-stage, that is supported
by the machine-frame using two cross-roller bearing rails (modeled
by a cross-pattern of translational springs), which enables motion in
the 𝑥-direction, and (3) the yz-stage, that is supported by the x-stage
using two similar cross-roller bearing rails, which enables motion in
the 𝑦-direction. The modules are indicated in Fig. 8. Furthermore, we
consider three external (force) inputs and (displacement) outputs for
this system. The three force inputs, which define 𝑢𝑐 , are located at
the positions of the motors, actuating, respectively, the x-, y- and 𝑧-
direction. Actuation in the 𝑧-direction is realized by using an elastic
rotational hinge around the 𝑥-axis. This hinge couples the y- and z-stage
(together forming the yz-stage). It should be noted that in our case, we
assume that rotations of the z-stage remain small enough to justify the
assumption of linear behavior. The three displacement outputs, which
define 𝑦𝑐 , are measured at the encoder locations, enabling to monitor
the motions of the x-, y- and z-stage.

In total, there are four cross-roller bearing rails present within
the system, each containing nine roller bearings. Per rail, there are
two pairs of interfaces lying opposite of each other in perpendicular
directions. To each interface, nine translational springs, representing
the roller bearings, are attached, as illustrated in the top CAD model in
Fig. 9. Using Ansys [29], a grid of equally spaced virtual interconnec-
tion points is modeled on each interface, as is illustrated in the bottom
CAD model in Fig. 9, where the total number of virtual interconnection
points 𝑛 is the same for each interface and varies between 9, 17,
𝑣
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Table 1
The number of DOFs per subsystem before
reduction 𝑛𝑗,𝑑𝑜𝑓 and after reduction 𝑟𝑗,𝑑𝑜𝑓 , and
the cut-off frequencies 𝑓𝑐,𝑗 that are associated
with the CMS reduction of subsystems 𝑗 =
1, 2, 3.
𝛴𝑗 1 2 3

𝑓𝑐,𝑗 [-] 0.24 0.27 0.13
𝑛𝑗,𝑑𝑜𝑓 4.6 ⋅ 105 1.6 ⋅ 106 3.8 ⋅ 106

𝑟𝑗,𝑑𝑜𝑓 347 431 329

and 33 for testing purposes. The DOFs that correspond to the virtual
interconnection points, as well as the DOFs that correspond to the
external inputs and outputs of the system are defined as interface DOFs.

Since the high-order FE-models of the subsystems 𝛴𝑗 (of order 𝑛𝑗)
consist of millions of DOFs, the subsystem models have to be reduced
before exporting their respective (reduced) mass and stiffness matrices,
such that they can be handled with a feasible amount of computational
cost. To achieve this, the CMS reduction method of Craig-Bampton [11]
is used, where the DOFs of the system are partitioned into boundary
and internal DOFs. Two sets of modes are used. First, constraint modes
(static modes) are defined for all interface DOFs, which were already
defined earlier. Second, a set of kept fixed-boundary eigenmodes is
defined, which are the kept dynamic modes of the system when all
boundary DOFs are fixed. Both types of modes form the reduction-basis
for this method.

After reduction, the boundary/interface DOFs are retained, while
the internal DOFs are condensed to a (much) smaller set of generalized
DOFs. The number of kept fixed-boundary eigenmodes, together with
the number of boundary/interface DOFs, determines the order 𝑟𝑗 of the
reduced-order subsystem models.

For all subsystem models, 200 fixed-boundary eigenmodes are in-
cluded in the reduction basis, such that the associated cut-off frequen-
cies 𝑓𝑐,𝑗 , for all subsystems 𝑗 = 1, 2, 3 are multiple times larger than
the (normalized3) largest frequency of interest (𝑓𝑖 = 0.04 [–]) to ensure
that this initial reduction step does not lead to a loss of accuracy in this
frequency range.

The specific normalized cut-off frequencies, the number of DOFs
before reduction 𝑛𝑗,𝑑𝑜𝑓 , and the number of DOFs after reduction 𝑟𝑗,𝑑𝑜𝑓
(for 𝑛𝑣 = 9), for all subsystems are given in Table 1. It is important
to note that this initial CMS reduction step in general leads to re-
duced models which are still too big for some (especially real-time)
applications. A second reduction step based on the modular reduction
methodology in [19] will be discussed later in Section 5.3. By using the
(reduced) mass and stiffness matrices 𝑀𝑗 and 𝐾𝑗 , respectively, damping
matrices 𝐷𝑗 for all subsystems 𝑗 = 1, 2, 3 are constructed with 3%
modal damping. Subsequently, state-space models are constructed for
each subsystem using MATLAB [30], in which we exploit the sparse
nature of the models. Note that all DOFs, associated with the virtual
interconnection points, are defined as inputs and outputs in the input
and output matrices 𝐵𝑗 and 𝐶𝑗 , respectively, in each subsystem model.
Using the position-dependent modular model framework, as proposed
in Section 3, a position-dependent interconnection matrix ̄ ∈ R𝑚𝑏×𝑝𝑏

s constructed to interconnect the subsystem models. In addition, the
xternal inputs and outputs of the interconnected system are selected.

Furthermore, for validation purposes, the wire bonder system is also
odeled at nine different operating points, using the static intercon-
ection matrix  from Section 2, where the x- and y-positions of the
- and yz-motion stages are both varied between −0.02, 0, and 0.02 m.

Note that constructing these separate models using the framework from
Section 2 is significantly more time consuming than constructing a
single position-dependent model, using the proposed methodology. In
the next section, the position-dependent interconnected system model
is compared to these fixed-position models.

3 For confidentiality, all frequencies and FRF magnitudes are normalized.
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Fig. 10. Top figure: Comparison between the normalized magnitude plots |𝐺𝑐,𝑧𝑧(𝑖𝜔)|
and |�̄�𝑐,𝑧𝑧(𝑖𝜔)| for different amounts of virtual interconnection points per interface 𝑛𝑣,
and the magnitude plots of the corresponding error dynamics 𝐸𝑐,𝑧𝑧(𝑖𝜔) (𝑥 = 0 [m], 𝑦 = 0
[m]). Bottom figure: Zoom of the higher normalized frequency range.

5.2. Comparing �̄�𝑐 with 𝐺𝑐

In Fig. 10, the normalized magnitude of 𝐺𝑐,𝑧𝑧 (external z-actuator
input to external z-encoder output) of the interconnected system model,
constructed with the static interconnection matrix , is compared
to the interconnected system models, constructed with the position-
dependent interconnection matrix ̄ for different numbers of virtual
interconnection points 𝑛𝑣 per interface. From Fig. 10, it can be observed
that the modular modeling approach is able to accurately approximate
the dynamics.

There is a significant difference in magnitude between the model
𝐺𝑐,𝑧𝑧 and the model �̄�𝑐,𝑧𝑧 for 𝑛𝑣 = 9. In contrast, this difference is
significantly less apparent for 𝑛𝑣 = 17 and 𝑛𝑣 = 33. By inspecting the
error dynamics 𝐸𝑐,𝑧𝑧(𝑠) = 𝐺𝑐,𝑧𝑧(𝑠)−�̄�𝑐,𝑧𝑧(𝑠), it can be observed that if the
number of virtual interconnection points per interface 𝑛𝑣 is increased,
the accuracy of position-dependent model �̄�𝑐,𝑧𝑧(𝑠) increases. This is
expected, because for an increasing number virtual interconnection
points per interface, the (interpolation) distances between the physical
interconnection point and the adjacent virtual interconnection points
become smaller, resulting in a more accurate approximation of the
interface dynamics.

To demonstrate the computational advantages of using the proposed
model framework over the static model framework, in Fig. 11, the
normalized magnitudes of the FRFs of �̄�𝑐,𝑧𝑦 (external y-actuator input
to external z-encoder output) are shown as a function of the operating
point in the x- and 𝑦-direction, respectively. Here, a grid of 50 x-
and y-positions are used, respectively. It is computationally (relatively)
inexpensive to generate these results with the proposed framework, as
the FRFs of the subsystems are required to be computed only once.
Then, the FRFs of the interconnected system can be determined for a
large number of operating points in fast succession, using cheap matrix
operations, as discussed in Section 3. In comparison, the conventional
approach would require computation of new FRFs from the subsystem
models at every operating point. Fig. 11 also shows that such analysis
can quickly visualize how resonance frequencies (e.g., the one near the
normalized frequency of 0.01) depend on the y-position, while for the
x-position it shows no significant position-dependent behavior.

To demonstrate the accuracy of the position-dependent modular
model framework, entries of 𝐺𝑐 (𝑠) are compared to similar entries from
�̄� (𝑠) at multiple operating points using 𝑛 = 17. In Figs. 12 and 13,
𝑐 𝑣
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Fig. 11. Normalized magnitude plot |�̄�𝑐,𝑧𝑦(𝑖𝜔)| as a function of a changing operating
point in the 𝑥-direction (𝑦 = 0 [m], top figure) and as a function of a changing operating
point in the 𝑦-direction (𝑥 = 0 [m], bottom figure).

Fig. 12. Top figure: Comparison between the normalized magnitude plots |𝐺𝑐,𝑧𝑦(𝑖𝜔)|
and |�̄�𝑐,𝑧𝑦(𝑖𝜔)| for different operating points in the 𝑦-direction, including the magnitude
plots of the corresponding error dynamics 𝐸𝑐,𝑧𝑦(𝑖𝜔) (𝑥 = 0 [m]). Bottom figure: Zoom
of the higher normalized frequency range.

the normalized magnitudes of the FRFs of both models are plotted
along with the normalized magnitudes of the FRFs of the corresponding
error dynamics 𝐸𝑐 (𝑠) = 𝐺𝑐 (𝑠) − �̄�𝑐 (𝑠), for the transfer functions from
the actuator input 𝑦 to encoder output 𝑧, and from actuator input 𝑧
to encoder output 𝑧, respectively. It can be observed that the wire
bonder model shows a clear sensitivity to a changing operating point
in the 𝑦-direction (𝑥 = 0 [m] in Figs. 12 and 13, with regards to its
input-to-output behavior, at higher frequencies.

Moreover, it appears that for each operating point, the plotted
entries of 𝐺𝑐 (𝑠) can be closely approximated by �̄�𝑐 (𝑠) with sufficient
accuracy. In Figs. 14 and 15, the normalized magnitudes of the FRFs
of 𝐺𝑐 (𝑠), �̄�𝑐 (𝑠), and 𝐸𝑐 (𝑠), are plotted for the same inputs and outputs
for multiple operating points in the 𝑥-direction (𝑦 = 0 [m]). It can
be observed that the wire bonder is significantly less sensitive to a
changing operating point in the 𝑥-direction, with regards to its input-
to-output behavior. Also in Figs. 14 and 15, the position-dependent
8

Fig. 13. Top figure: Comparison between the normalized magnitude plots |𝐺𝑐,𝑧𝑧(𝑖𝜔)|
and |�̄�𝑐,𝑧𝑧(𝑖𝜔)| for different operating points in the 𝑦-direction, including the magnitude
plots of the corresponding error dynamics 𝐸𝑐,𝑧𝑧(𝑖𝜔) (𝑥 = 0 [m]). Bottom figure: Zoom
of the higher normalized frequency range.

Fig. 14. Top figure: Comparison between the normalized magnitude plots |𝐺𝑐,𝑧𝑦(𝑖𝜔)|
and |�̄�𝑐,𝑧𝑦(𝑖𝜔)| for different operating points in the 𝑥-direction, including the magnitude
plots of the corresponding error dynamics 𝐸𝑐,𝑧𝑦(𝑖𝜔) (𝑦 = 0 [m]). Bottom figure: Zoom
of the higher normalized frequency range.

interconnected system model �̄�𝑐 (𝑠) is able to approximate 𝐺𝑐 (𝑠) with
sufficient accuracy.

5.3. Modular model reduction

Even though the resulting position-dependent interconnected sys-
tem model �̄�𝑐 , after the initial CMS reduction step, is of a sufficiently
small order to analyze the input-to-output behavior of the WBM, it
is still of a relatively high-order (𝑛 = 2166 for 𝑛𝑣 = 9 virtual inter-
connection points per interface). Therefore, we aim to further reduce
the interconnected system model, without compromising too much on
model accuracy. A modular MOR framework that allows this is recently
introduced in [19]. This framework enables to determine FRF accuracy
requirements on the subsystem ROMs, such that we can guarantee
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Fig. 15. Top figure: Comparison between the normalized magnitude plots |𝐺𝑐,𝑧𝑧(𝑖𝜔)|
and |�̄�𝑐,𝑧𝑧(𝑖𝜔)| for different operating points in the 𝑥-direction, including the magnitude
plots of the corresponding error dynamics 𝐸𝑐,𝑧𝑧(𝑖𝜔) (𝑦 = 0 [m]). Bottom figure: Zoom
of the higher normalized frequency range.

FRF error bounds on the interconnected system ROM. Furthermore,
this framework allows to use multiple MOR techniques, tailored to the
specific requirements on each subsystem. This way, only a single ROM
needs to be computed for each subsystem, which can be used to obtain
accurate system models over the entire operating point of the WBM.
In contrast, the conventional approach would require a dedicated re-
duction step for each operating point. This difference is also illustrated
in Fig. 2. In this second reduction step, we use three different MOR
techniques: (1) Balanced truncation [8], (2) Craig-Bampton CMS [11],
and 3) Hintz–Herting CMS [12].

Since we made the interconnected system model position-dependent
through ̄, it is a priori unclear how this position-dependency affects
the minimal model order that is required, such that a specific FRF
accuracy requirement of the ROM ̂̄𝐺𝑐 (𝑠) is met at all operating points.
Therefore, we apply the MOR framework from [19] to reduce �̄�𝑐 (𝑠)
at nine different operating points. For each operating point, the min-
imal subsystem model order 𝑟𝑗 is determined for all three reduction
techniques, such that the interconnected system model accuracy re-
quirements are based on a maximum on the relative error of 10% up
until the largest frequency of interest (𝑓𝑖 = 0.04 [-]), i.e.,

|

̂̄𝐺𝑐,𝑧𝑦(𝑖𝜔) − �̄�𝑐,𝑧𝑦(𝑖𝜔)|

|�̄�𝑐,𝑧𝑦(𝑖𝜔)|
< 0.1. (18)

or all 𝜔 in the frequency range of interest.
Since the MOR framework from [19] does not scale efficiently with

arge interconnection matrices (it does scale with a high number of
ystem states), we use 𝑛𝑣 = 9 to limit the required computation time,
hich gives ̄ ∈ R308×308. This results in a computation time of 116
inutes per evaluated operating point (AMD(R) Ryzen(TM) 7 5800X3D
PU (4.5 GHz), 64 GB RAM). The results are presented in Table 2.4

From the results, it can be concluded that there is little variation in
he minimally required subsystem model orders between the operating
oints, when using the same reduction technique. This indicates that,

4 It should be noted that we can only guarantee the aforementioned accu-
acy requirement on ̂̄𝐺𝑐 (𝑠) for the nine operating points that were evaluated
sing the reduced subsystem models orders given in Table 2, which express
for different reduction methods) the minimal subsystem ROM order, such that
utomatically (18) is satisfied.
9

Table 2
Minimal subsystem model orders 𝑟𝑗 (number of states) to meet the accuracy require-

ents of the interconnected system model, evaluated at nine different operating points,
sing three MOR techniques.

Operating point

1 2 3 4 5 6 7 8 9

𝛴1

BT 118 118 118 118 118 118 118 118 118
CB 162 162 166 166 166 166 178 178 170
HH 162 162 162 162 162 174 170 166 166

𝛴2

BT 252 252 252 252 252 252 253 253 253
CB 434 434 434 434 434 434 434 434 434
HH 334 334 334 338 334 350 342 342 342

𝛴3

BT 328 328 328 328 328 328 328 328 328
CB 332 332 332 332 332 332 332 332 332
HH 240 240 240 240 240 240 252 248 248

Table 3
Optimal MOR technique and model order 𝑟𝑗 per subsystem to meet the
accuracy requirements of the interconnected system model at all nine
operating points.

Method 𝑛𝑗 𝑟𝑗 Reduction %

𝛴1 BT 646 118 80.8
𝛴2 BT 862 253 70.6
𝛴3 HH 658 252 61.7
Total: 2166 623 71.2

in this case study, the accuracy requirements of the subsystems are not
very sensitive to the operating point of the system. Furthermore, it can
be concluded that the balanced truncation method is the most effective
MOR technique for the first and second subsystem models, whereas the
CMS method of Hintz–Herting is the most effective MOR technique for
the third subsystem. In Table 3, the resulting subsystem model orders,
before and after reduction, are presented.

These results show that the MOR framework, introduced in [19],
in combination with the position-dependent model introduced in this
paper allows to construct an accurate, modular, and position-dependent
ROM of the interconnected system model that facilitates to obtain
FRFs at the operating range of the interconnected system in a fast and
accurate manner.

6. Conclusions

In conclusion, this paper introduces a novel modular model frame-
work for position-dependent dynamical systems consisting of multi-
ple flexible bodies and translating interfaces, while addressing a key
limitation in current modeling approaches. Namely, the conventional
modular model framework requires remodeling of subsystems when
evaluating the input-to-output behavior at different operating points
(due to the position-dependency), which often has to be done manually
and/or is computationally costly. The proposed framework overcomes
this roadblock by incorporating a position-dependent interconnection
structure through fixed grids of virtual interconnection points, intro-
duced along the interfaces. This ensures that the subsystem models are
identical at all operating points of the system.

In addition, by making the interconnection structure position-
dependent, the proposed framework enables the construction of a
modular reduced-order model for the interconnected system that in-
corporates position-dependent behavior without sacrificing modularity.
To obtain this reduced-order model, we use a recently introduced
modular model-order reduction framework that ensures that FRF error
bounds on the reduced-order model of the interconnected system are
satisfied (at a selection of operating points), enhancing the reliability
and applicability of the proposed modular model framework.

Finally, the proposed modular modeling framework is applied to an
industrial wire bonder model, in which we demonstrate the modeling

method. Here, we validate by comparison with the classical modeling
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approach that the model is accurate when enough virtual interconnec-
tion points are used. We show, for this case study, an accurate, modular,
and position-dependent reduced-order model that can be used to obtain
frequency-response functions at the operating range of the system in a
fast and accurate manner. Such models can subsequently be used to
support model-based design guaranteeing performance over the entire
operating range.
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Appendix. Preservation of stiffness properties

In this section, we demonstrate that, for a certain operating point,
the translational and rotational stiffness (with respect to an arbitrary
point on the interface) of the position-dependent interconnection ma-
trix ̄11, is equivalent to the static interconnection matrix 11. Con-
sider the interconnected system 𝐺𝑐 (𝑠), interconnected through a static
interconnection matrix , and �̄�𝑐 (𝑠), interconnected through a position-
dependent interconnection matrix ̄. In the simulation example below
we show that when the stiffness of the subsystems is increased, the dif-
ference in input-to-output behavior between 𝐺𝑐 (𝑠) and �̄�𝑐 (𝑠) converges
to zero. However, in practice the subsystems are flexible. Therefore,
errors are introduced by interpolating the characteristics of the physical
interconnections to the inputs and outputs, corresponding to the virtual
interconnection points, as described in Section 3.

Using a simplified 2D FE-model of the WBM, we demonstrate that,
for an increasing subsystem stiffness, the error between the FRFs of
𝐺𝑐 (𝑠) and �̄�𝑐 (𝑠) converges to zero. The WBM in this model (illustrated in
Fig. A.16) consists of two subsystems: (1) the x-stage, which is modeled
as a clamped beam, because there are no DOFs in the 𝑥-direction, and
(2) the yz-stage, that is supported by the x-stage using three bearings
(modeled by three vertical translational springs with stiffness 𝑘𝑠 = 2⋅106
10

[N/m]), which enables motion in the 𝑦-direction. Furthermore, the
Fig. A.16. 2D wire bonder model, consisting of an x-stage and a yz-stage (with external
input 𝑢𝑐 and output 𝑦𝑐 ), which are interconnected by three bearings (modeled as
translational springs).

Fig. A.17. 2D FE models of the x-stage and yz-stage of the WBM, interconnected
through three translational springs (indicated by black vertical lines between the
subsystems).

Fig. A.18. Plot of the 𝐻∞ norm of the relative error FRF 𝐸𝑐,𝑟(𝑖𝜔), as a function of the
Young’s modulus of the subsystems.

horizontal dimensions of the yz-stage are stretched in this model to
exaggerate position-dependent behavior (see Fig. A.17).

Using MATLAB’s [30] PDE toolbox, FE-models of the subsystems
have been generated (see Fig. A.17), where both are discretized us-
ing quadratic triangular plane-stress elements, with a mass density of
7800 kg∕m2, a Poisson’s ratio of 0.3, and 3% modal damping. The
Young’s modulus is treated as a variable in this example to vary the
stiffness of the subsystems. The interconnected system models 𝐺𝑐 (𝑠) and
̄𝑐 (𝑠) (with 𝑛𝑣 = 5 virtual interconnection points per interface) have
een constructed according to the modular model frameworks from
ections 2 and 3, respectively.

To quantify the accuracy of the FRF of �̄�𝑐 (𝑠) compared to the FRF
f 𝐺𝑐 (𝑠), as a function of the subsystem stiffness, the 𝐻∞ norm of the
elative error 𝐸𝑐,𝑟(𝑠) is calculated according to

𝐸𝑐,𝑟(𝑠)‖‖∞ =
‖

‖

‖

‖

‖

�̄�𝑐 (𝑠) − 𝐺𝑐 (𝑠)
𝐺𝑐 (𝑠)

‖

‖

‖

‖

‖∞
= 𝑚𝑎𝑥

𝜔∈R
|

|

𝐸𝑐,𝑟(𝑖𝜔)|| . (A.1)

The results are plotted in Fig. A.18. It can be observed that the norm

of the relative error FRF 𝐸𝑐,𝑟(𝑖𝜔) converges to zero when the subsystem
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stiffness is increased. This indicates that when the subsystems behave as
rigid bodies, the static and position-dependent interconnection matrices
 and ̄, respectively, have an identical effect on the input-to-output
behavior of the interconnected system. This implies that the stiff-
ness, described by the position-dependent interconnection structure,
is preserved in the position-dependent model framework, described in
Section 3. In real-world applications, the subsystems do not behave as
rigid-bodies, and, therefore, the error between 𝐺𝑐 (𝑠) and �̄�𝑐 (𝑠) can only
be decreased by adding more virtual interconnection points on each
interface (or by placing them more efficiently).
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