42 research outputs found

    Physicochemical characterisation of restructured FenalÄr and safety implications of salt and nitrite reduction

    Get PDF
    There is a new trend to produce dry-cured ham from lamb in shorter times by boning the ham before salting to later obtain restructured hams that are easier to dry and slice. However, little information about the physicochemical characteristics of Norwegian FenalÄrs during the process or the safety implications of their elaboration procedures is reported in the literature. The aim of this study was to characterize the colour, texture and physicochemical properties of restructured FenalÄrs when using Standard Salting (SS), Salt Reduced (SR) and a Non-Nitrite Salt Reduced (NNSR) treatments. Microbiological safety implications of the elaboration process when using the different salting treatments were also assessed using predictive microbiology. To do so, sixty FenalÄrs were elaborated using a Standard Salting (SS), a Salt reduced (SR) and a Non-Nitrite Salt Reduced (NNSR) treatments. Physicochemical characterization (instrumental colour and texture and Zinc Protoporphyrin content) was performed at the end of the process using thirty FenalÄrs. The rest of the FenalÄrs were used to characterize the product through the elaboration process (pH and aw) for the evaluation of microbiological hazards when using the different salting treatments using predictive microbiology. Results showed a significant increase in softness when reducing salt content and a decrease of redness when no nitrite was used, attributed to the formation of ZnPP content instead of nitrosylmyoglobin. In terms of risk assessment, the decrease of aw through the elaboration process reduced the growth capacity of all the microorganisms evaluated. However, microbiological safety implications in salt reduced FenalÄrs are important, especially when no nitrite was added, because the considerable increase of growth potential of L. monocytogenes. The increase of growth potential of proteolytic C. botulinum is very little and no relevant effect of nitrite on growth potential of S. aureus was observed. Predictive microbiology and optimization of the process to enhance ZnPP formation can help to ensure safety and quality of salt reduced restructured FenalÄrs without additives.info:eu-repo/semantics/acceptedVersio

    Detectability of the degree of freeze damage in meat analytic-tool depends on selection

    Get PDF
    Novel freezing solutions are constantly being developed to reduce quality loss in meat production chains. However, there is limited focus on identifying the sensitive analytical tools needed to directly validate product changes that result from potential improvements in freezing technology. To benchmark analytical tools relevant to meat research and production, we froze pork samples using traditional (−25 °C, −35 °C) and cryogenic freezing (−196 °C). Three classes of analyses were tested for their capacity to separate different freeze treatments: thaw loss testing, bioelectrical spectroscopy (nuclear magnetic resonance, microwave, bioimpedance) and low-temperature microscopy (cryo-SEM). A general effect of freeze treatment was detected with all bioelectrical methods. Yet, only cryo-SEM resolved quality differences between all freeze treatments, not only between cryogenic and traditional freezing. The detection sensitivity with cryo-SEM may be explained by testing meat directly in the frozen state without prior defrosting. We discuss advantages, shortcomings and cost factors in using analytical tools for quality monitoring in the meat sector

    Effects of different production systems on carcass and meat quality of sheep and lamb from Western Balkan and Norway

    No full text
    The identification of meat quality characteristics from selected breeds grazing in specific regions is particularly relevant to achieve a marketing advantage. Longisimus thoracis at lumborum (LTL) from the indigenous Western Balkan (WB) sheep - VlaĆĄićka Pramenka (VP) sheep and lambs, and Pivska Pramenka (PP) sheep grazing in Bosnia & Herzegovina (B&H) and Montenegro (MN), respectively, was compared regarding carcass and meat qualities to the crossbred Norwegian white sheep (NWS) - sheep and lambs, grazing in wide Hardangervidda and Jotunheimen regions where the lamb meat is marketed as gourmet meat. The WB sheep had lower average carcass weights and antioxidant capacity, higher ultimate pH, intramuscular fat and n-6/n-3 ratio, but better tenderness and color stability compared to NWS. The WB lambs were lighter, had higher n-6/n-3 ratio, lower antioxidant capacity and became more easily rancid despite a higher fat α-tocopherol content. The marketing advantage of WB meat is its tenderness properties while NO's NWS lambs displayed a better nutritional profile

    Nutrient-Optimized Beef Enhances Blood Levels of Vitamin D and Selenium among Young Women

    No full text
    Bovine meat provides healthy nutrients but has also been negatively linked to greenhouse gases and non-communicable diseases. A double-blind intervention study was carried out to compare beef meat from bulls fed with feed supplemented with selenium, vitamin D, E, K (SeDEK-feed), and n-3, or REGULAR feed. Thirty-four young healthy women (19-29 years old) consumed 300 g of these beef types per day for 6 days in a cross-over design. Diet registrations, blood samples, anthropometric measurements, and clinical data were collected four times. Both beef diets were higher than their habitual diet in protein, fat, saturated fat, and several micronutrients; contained more vegetables and fewer carbohydrates and were followed by a higher feeling of satiety. The SeDEK beef had higher amounts of selenium, vitamin 25-hydroxyvitamin D3 (25(OH)D3), E, and K (MK4), and increased serum selenium and 25(OH)D3 from the participants' normal values if they were below 85 mu g/L of selenium and 30 nmol of 25(OH)D3/L, respectively. Our study showed that optimized beef increased serum selenium in young women having moderate selenium levels and improved blood 25(OH)D3 in a woman having low to normal 25(OH)D3. Meat should be optimized to increase specific consumer groups' needs for selenium and vitamin D

    Nutrient-Optimized Beef Enhances Blood Levels of Vitamin D and Selenium among Young Women

    Get PDF
    Bovine meat provides healthy nutrients but has also been negatively linked to greenhouse gases and non-communicable diseases. A double-blind intervention study was carried out to compare beef meat from bulls fed with feed supplemented with selenium, vitamin D, E, K (SeDEK-feed), and n-3, or REGULAR feed. Thirty-four young healthy women (19–29 years old) consumed 300 g of these beef types per day for 6 days in a cross-over design. Diet registrations, blood samples, anthropometric measurements, and clinical data were collected four times. Both beef diets were higher than their habitual diet in protein, fat, saturated fat, and several micronutrients; contained more vegetables and fewer carbohydrates and were followed by a higher feeling of satiety. The SeDEK beef had higher amounts of selenium, vitamin 25-hydroxyvitamin D3 (25(OH)D3), E, and K (MK4), and increased serum selenium and 25(OH)D3 from the participants’ normal values if they were below 85 ”g/L of selenium and 30 nmol of 25(OH)D3/L, respectively. Our study showed that optimized beef increased serum selenium in young women having moderate selenium levels and improved blood 25(OH)D3 in a woman having low to normal 25(OH)D3. Meat should be optimized to increase specific consumer groups’ needs for selenium and vitamin D
    corecore