51 research outputs found

    A genome-wide association study on androstenone levels in pigs reveals a cluster of candidate genes on chromosome 6

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In many countries, male piglets are castrated shortly after birth because a proportion of un-castrated male pigs produce meat with an unpleasant flavour and odour. Main compounds of boar taint are androstenone and skatole. The aim of this high-density genome-wide association study was to identify single nucleotide polymorphisms (SNPs) associated with androstenone levels in a commercial sire line of pigs. The identification of major genetic effects causing boar taint would accelerate the reduction of boar taint through breeding to finally eliminate the need for castration.</p> <p>Results</p> <p>The Illumina Porcine 60K+SNP Beadchip was genotyped on 987 pigs divergent for androstenone concentration from a commercial Duroc-based sire line. The association analysis with 47,897 SNPs revealed that androstenone levels in fat tissue were significantly affected by 37 SNPs on pig chromosomes SSC1 and SSC6. Among them, the 5 most significant SNPs explained together 13.7% of the genetic variance in androstenone. On SSC6, a larger region of 10 Mb was shown to be associated with androstenone covering several candidate genes potentially involved in the synthesis and metabolism of androgens. Besides known candidate genes, such as cytochrome P450 A19 (<it>CYP2A19</it>), sulfotransferases <it>SULT2A1</it>, and <it>SULT2B1</it>, also new members of the cytochrome P450 <it>CYP2 </it>gene subfamilies and of the hydroxysteroid-dehydrogenases (<it>HSD17B14</it>) were found. In addition, the gene encoding the ß-chain of the luteinizing hormone (<it>LHB</it>) which induces steroid synthesis in the Leydig cells of the testis at onset of puberty maps to this area on SSC6. Interestingly, the gene encoding the α-chain of LH is also located in one of the highly significant areas on SSC1.</p> <p>Conclusions</p> <p>This study reveals several areas of the genome at high resolution responsible for variation of androstenone levels in intact boars. Major genetic factors on SSC1 and SSC6 showing moderate to large effects on androstenone concentration were identified in this commercial breeding line of pigs. Known and new candidate genes cluster especially on SSC6. For one of the most significant SNP variants, the difference in the proportion of animals surpassing the threshold of consumer acceptance between the two homozygous genotypes was as much as 15.6%.</p

    Genomic selection for crossbred performance accounting for breed-specific effects

    Get PDF
    International audienceAbstractBackgroundBreed-specific effects are observed when the same allele of a given genetic marker has a different effect depending on its breed origin, which results in different allele substitution effects across breeds. In such a case, single-breed breeding values may not be the most accurate predictors of crossbred performance. Our aim was to estimate the contribution of alleles from each parental breed to the genetic variance of traits that are measured in crossbred offspring, and to compare the prediction accuracies of estimated direct genomic values (DGV) from a traditional genomic selection model (GS) that are trained on purebred or crossbred data, with accuracies of DGV from a model that accounts for breed-specific effects (BS), trained on purebred or crossbred data. The final dataset was composed of 924 Large White, 924 Landrace and 924 two-way cross (F1) genotyped and phenotyped animals. The traits evaluated were litter size (LS) and gestation length (GL) in pigs.ResultsThe genetic correlation between purebred and crossbred performance was higher than 0.88 for both LS and GL. For both traits, the additive genetic variance was larger for alleles inherited from the Large White breed compared to alleles inherited from the Landrace breed (0.74 and 0.56 for LS, and 0.42 and 0.40 for GL, respectively). The highest prediction accuracies of crossbred performance were obtained when training was done on crossbred data. For LS, prediction accuracies were the same for GS and BS DGV (0.23), while for GL, prediction accuracy for BS DGV was similar to the accuracy of GS DGV (0.53 and 0.52, respectively).ConclusionsIn this study, training on crossbred data resulted in higher prediction accuracy than training on purebred data and evidence of breed-specific effects for LS and GL was demonstrated. However, when training was done on crossbred data, both GS and BS models resulted in similar prediction accuracies. In future studies, traits with a lower genetic correlation between purebred and crossbred performance should be included to further assess the value of the BS model in genomic predictions

    The distal end of porcine chromosome 6p is involved in the regulation of skatole levels in boars

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Boar taint is an unpleasant condition of pork, mainly due to the accumulation of androstenone and skatole in male pigs at onset of puberty. This condition is the cause of considerable economic losses in the pig industry and the most common practice to control it is to castrate male piglets. Because of the economic and animal welfare concerns there is interest in developing genetic markers that could be used in selection schemes to decrease the incidence of boar taint. The Porcine 60 K SNP Beadchip was used to genotype 891 pigs from a composite Duroc sire line, for which skatole levels in fat had been collected.</p> <p>Results</p> <p>The genome-wide association study revealed that 16 SNPs (single nucleotide polymorphisms) located on the proximal region of chromosome 6 were significantly associated with skatole levels. These SNPs are grouped in three separate clusters located in the initial 6 Mb region of chromosome 6. The differences observed between the homozygote genotypes for SNPs in the three clusters were substantial, including a difference of 102.8 ng/g skatole in melted fat between the homozygotes for the ALGA0107039 marker. Single SNPs explain up to 22% of the phenotypic variance. No obvious candidate genes could be pinpointed in the region, which may be due to the need of further annotation of the pig genome.</p> <p>Conclusions</p> <p>This study demonstrated new SNP markers significantly associated with skatole levels in the distal region of chromosome 6p. These markers defined three independent clusters in the region, which contain a low number of protein-coding genes. The considerable differences observed between the homozygous genotypes for several SNPs may be used in future selection schemes to reduce skatole levels in pigs</p

    Genomic selection for boar taint compounds and carcass traits in a commercial pig population

    Get PDF
    AbstractThis study aimed to compare two different Genome-Wide Selection (GWS) methods (Ridge Regression BLUP − RR-BLUP and Bayesian LASSO − BL) to predict the genomic estimated breeding values (GEBV) of four phenotypes, including two boar taint compounds, i.e., the concentrations of androstenone (andro) and skatole (ska), and two carcass traits, i.e., backfat thickness (fat) and loin depth (loin), which were measured in a commercial male pig line. Six hundred twenty-two boars were genotyped for 2,500 previously selected single nucleotide polymorphisms (SNPs). The accuracies of the GEBV using both methods were estimated based on Jack-knife cross-validation. The BL showed the best performance for the andro, ska and loin traits, which had accuracy values of 0.65, 0.58 and 0.33, respectively; for the fat trait, the RR-BLUP accuracy of 0.61 outperformed the BL accuracy of 0.56. Considering that BL was more accurate for the majority of the traits, this method is the most favoured for GWS under the conditions of this study. The most relevant SNPs for each trait were located in the chromosome regions that were previously indicated as QTL regions in other studies, i.e., SSC6 for andro and ska, SSC2 for fat, and SSC11, SSC15 and SSC17 for loin

    Fecal microbial composition associated with variation in feed efficiency in pigs depends on diet and sex

    Get PDF
    Dietary fiber content and composition affect microbial composition and activity in the gut, which in turn influence energetic contribution of fermentation products to the metabolic energy supply in pigs. This may affect feed efficiency (FE) in pigs. The present study investigated the relationship between the fecal microbial composition and FE in individual growing-finishing pigs. In addition, the effects of diet composition and sex on the fecal microbiome were studied. Fecal samples were collected of 154 grower-finisher pigs (3-way crossbreeds) the day before slaughter. Pigs were either fed a diet based on corn/soybean meal (CS) or a diet based on wheat/barley/by-products (WB). Fecal microbiome was characterized by 16S ribosomal DNA sequencing, clustered by operational taxonomic unit (OTU), and results were subjected to a discriminant approach combined with principal component analysis to discriminate diets, sexes, and FE extreme groups (10 high and 10 low FE pigs for each diet by sex-combination). Pigs on different diets and males vs. females had a very distinct fecal microbiome, needing only 2 OTU for diet (P = 0.020) and 18 OTU for sex (P = 0.040) to separate the groups. The 2 most important OTU for diet, and the most important OTU for sex, were taxonomically classified as the same bacterium. In pigs fed the CS diet, there was no significant association between FE and fecal microbiota composition based on OTU (P > 0.05), but in pigs fed the WB diet differences in FE were associated with 17 OTU in males (P = 0.018) and to 7 OTU in females (P = 0.010), with 3 OTU in common for both sexes. In conclusion, our results showed a diet and sex-dependent relationship between FE and the fecal microbial composition at slaughter weight in grower-finisher pigs

    Effects of the number of markers per haplotype and clustering of haplotypes on the accuracy of QTL mapping and prediction of genomic breeding values

    Get PDF
    The aim of this paper was to compare the effect of haplotype definition on the precision of QTL-mapping and on the accuracy of predicted genomic breeding values. In a multiple QTL model using identity-by-descent (IBD) probabilities between haplotypes, various haplotype definitions were tested i.e. including 2, 6, 12 or 20 marker alleles and clustering base haplotypes related with an IBD probability of > 0.55, 0.75 or 0.95. Simulated data contained 1100 animals with known genotypes and phenotypes and 1000 animals with known genotypes and unknown phenotypes. Genomes comprising 3 Morgan were simulated and contained 74 polymorphic QTL and 383 polymorphic SNP markers with an average r2 value of 0.14 between adjacent markers. The total number of haplotypes decreased up to 50% when the window size was increased from two to 20 markers and decreased by at least 50% when haplotypes related with an IBD probability of > 0.55 instead of > 0.95 were clustered. An intermediate window size led to more precise QTL mapping. Window size and clustering had a limited effect on the accuracy of predicted total breeding values, ranging from 0.79 to 0.81. Our conclusion is that different optimal window sizes should be used in QTL-mapping versus genome-wide breeding value prediction

    Mapping carcass and meat quality QTL on Sus Scrofa chromosome 2 in commercial finishing pigs

    Get PDF
    Quantitative trait loci (QTL) affecting carcass and meat quality located on SSC2 were identified using variance component methods. A large number of traits involved in meat and carcass quality was detected in a commercial crossbred population: 1855 pigs sired by 17 boars from a synthetic line, which where homozygous (A/A) for IGF2. Using combined linkage and linkage disequilibrium mapping (LDLA), several QTL significantly affecting loin muscle mass, ham weight and ham muscles (outer ham and knuckle ham) and meat quality traits, such as Minolta-L* and -b*, ultimate pH and Japanese colour score were detected. These results agreed well with previous QTL-studies involving SSC2. Since our study is carried out on crossbreds, different QTL may be segregating in the parental lines. To address this question, we compared models with a single QTL-variance component with models allowing for separate sire and dam QTL-variance components. The same QTL were identified using a single QTL variance component model compared to a model allowing for separate variances with minor differences with respect to QTL location. However, the variance component method made it possible to detect QTL segregating in the paternal line (e.g. HAMB), the maternal lines (e.g. Ham) or in both (e.g. pHu). Combining association and linkage information among haplotypes improved slightly the significance of the QTL compared to an analysis using linkage information only

    Genetic selection to enhance animalwelfare using meat inspection data from slaughter plants

    No full text
    Animal health and welfare are monitored during meat inspection in many slaughter plants around the world. Carcasses are examined by meat inspectors and remarks are made with respect to different diseases, injuries, and other abnormalities. This is a valuable data resource for disease prevention and enhancing animal welfare, but it is rarely used for this purpose. Records on carcass remarks on 140,375 finisher pigs were analyzed to investigate the possibility of genetic selection to reduce the risk of the most prevalent diseases and indicators of suboptimal animal welfare. As part of this, effects of some non-genetic factors such as differences between farms, sexes, and growth rates were also examined. The most frequent remarks were pneumonia (15.4%), joint disorders (9.8%), pleuritis (4.7%), pericarditis (2.3%), and liver lesions (2.2%). Joint disorders were more frequent in boars than in gilts. There were also significant differences between farms. Pedigree records were available for 142,324 pigs from 14 farms and were used for genetic analysis. Heritability estimates for pneumonia, pleuritis, pericarditis, liver lesions, and joint disorders were 0.10, 0.09, 0.14, 0.24, and 0.17 on the liability scale, respectively, suggesting the existence of substantial genetic variation. This was further confirmed though genome wide associations using deregressed breeding values as phenotypes. The genetic correlations between these remarks and finishing traits were small but mostly negative, suggesting the possibility of enhancing pig health and welfare simultaneously with genetic improvement in finishing traits. A selection index based on the breeding values for these traits and their economic values was developed. This index is used to enhance animal welfare in pig farms
    • …
    corecore