5 research outputs found

    Biological insights into TCR gamma delta(+) and TCR alpha beta(+) intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE)

    Get PDF
    AbstractIntraepithelial lymphocytes (IELs) are abundant, evolutionarily conserved T cells, commonly enriched in T cell receptor (TCR) γδ expression. However, their primary functional potential and constitutive activation state are incompletely understood. To address this, serial analysis of gene expression (SAGE) was applied to murine TCRγδ+ and TCRαβ+ intestinal IELs directly ex vivo, identifying 15,574 unique transcripts that collectively portray an “activated yet resting,” Th1-skewed, cytolytic, and immunoregulatory phenotype applicable to multiple subsets of gut IELs. Expression of granzymes, Fas ligand, RANTES, prothymosin β4, junB, RGS1, Btg1, and related molecules is high, whereas expression of conventional cytokines and high-affinity cytokine receptors is low. Differentially expressed genes readily identify heterogeneity among TCRαβ+ IELs, whereas differences between resident TCRγδ+ IELs and TCRαβ+ IELs are less obvious

    Global patterns of antigen receptor repertoire disruption across adaptive immune compartments in COVID-19

    Get PDF
    Whereas pathogen-specific T and B cells are a primary focus of interest during infectious disease, we have used COVID-19 to ask whether their emergence comes at a cost of broader B cell and T cell repertoire disruption. We applied a genomic DNA-based approach to concurrently study the immunoglobulin-heavy (IGH) and T cell receptor (TCR) β and δ chain loci of 95 individuals. Our approach detected anticipated repertoire focusing for the IGH repertoire, including expansions of clusters of related sequences temporally aligned with SARS-CoV-2–specific seroconversion, and enrichment of some shared SARS-CoV-2–associated sequences. No significant age-related or disease severity–related deficiencies were noted for the IGH repertoire. By contrast, whereas focusing occurred at the TCRβ and TCRδ loci, including some TCRβ sequence–sharing, disruptive repertoire narrowing was almost entirely limited to many patients aged older than 50 y. By temporarily reducing T cell diversity and by risking expansions of nonbeneficial T cells, these traits may constitute an age-related risk factor for COVID-19, including a vulnerability to new variants for which T cells may provide key protection
    corecore