327 research outputs found

    Features of endothelial dysfunction in renal hypertension

    Get PDF
    Endothelial dysfunction is a marker of vascular disease, as well as the development and progression of hypertension in chronic kidney disease. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3574

    Π’Ρ‹Π±ΠΎΡ€ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² пнСвматичСского Ρ‚Ρ€Π΅Ρ…Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π° прямого дСйствия

    Get PDF
    Reducing pneumatic valves, which are part of modern pneumatic control systems, are widely used in the automation of production and technological processes in various fields of technology. The efficiency of using pressure reducing valves depends on their parameters and characteristics. To select the optimal parameters of pressure reducing valves, various methods are used based on the search for the minimum of the target (target or criteria) function.The object of study is a three-line direct-acting pressure reducing valve, which ensures the determination of its optimal parameters. To calculate the optimal parameters of the pressure reducing valve, the method of orthogonal experimental design was applied. The main advantage of this method is that in this case all variables are varied simultaneously.The article presents the design features of a three-line direct-acting pressure reducing valve.The developed mathematical model of a pressure reducing valve is presented, which is a system of equations for a three-line direct-acting pressure reducing valve, which should be used to select the optimal parameters of the pressure reducing valve.To calculate the optimal parameters of the pressure reducing valve, the method of orthogonal experimental design was used. As an optimality criterion, the integral criterion of the squared error of the transient process, the change in the pressure level in the outlet line of the valve, was chosen.The optimal parameters of the pressure reducing valve are found, and transient processes of pressure change in the outlet line of the pressure reducing valve are calculated. The main requirements for optimization and selection of the optimal parameters of pressure reducing valves are formulated. A comparison of the transient processes of the outlet pressure before and after optimization is given.Based on the results of the work, the following conclusions were drawn:From the obtained comparative results of the transient processes of the level of outlet pressure in the outlet of the pressure reducing valve before and after optimization, it was found that after optimization the pressure reducing valve has a faster response.The speed has been increased from 0.35 s to 0.27 s, that is, the speed has increased by 1.30 times.The transient overshoot is less than 5%, and the static error is reduced by 1.9% and is completely eliminated.Π Π΅Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ пнСвматичСскиС ΠΊΠ»Π°ΠΏΠ°Π½Ρ‹, входящиС Π² состав соврСмСнных пнСвматичСских систСм управлСния, находят ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ производствСнных ΠΈ тСхнологичСских процСссов Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… областях Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ. Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ использования Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ»Π°ΠΏΠ°Π½ΠΎΠ² зависит ΠΎΡ‚ ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΈ характСристик. Для Π²Ρ‹Π±ΠΎΡ€Π° ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ»Π°ΠΏΠ°Π½ΠΎΠ² ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹, основанныС Π½Π° поискС ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ†Π΅Π»Π΅Π²ΠΎΠΉ (Ρ†Π΅Π»Π΅Π²Ρ‹Ρ… ΠΈΠ»ΠΈ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π²) Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.ΠžΠ±ΡŠΠ΅ΠΊΡ‚ исслСдования – Ρ‚Ρ€Π΅Ρ…Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΊΠ»Π°ΠΏΠ°Π½ прямого дСйствия, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΉ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… Π΅Π³ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ².Β  Для вычислСния ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ проСктирования. ОсновноС достоинство этого ΠΌΠ΅Ρ‚ΠΎΠ΄Π° состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π² этом случаС ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ Π²Π°Ρ€ΡŒΠΈΡ€ΡƒΡŽΡ‚ΡΡ всС ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ конструктивныС особСнности Ρ‚Ρ€Π΅Ρ…Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π° прямого дСйствия.ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π° разработанная матСматичСская модСль Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π°, Β ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΡƒΡŽ собой систСму ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Ρ‚Ρ€Π΅Ρ…Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π° прямого дСйствия, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для Π²Ρ‹Π±ΠΎΡ€Π° ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π°.Для вычислСния ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π° использован ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ проСктирования. Π’ качСствС критСрия ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π²Ρ‹Π±Ρ€Π°Π½ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° ошибки ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ процСсса, измСнСния уровня давлСния Π² Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ ΠΊΠ»Π°ΠΏΠ°Π½Π°.НайдСны ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π°, ΠΈ вычислСны ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π½Ρ‹Π΅ процСссы измСнСния давлСния Π² Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π°. Π‘Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ основныС трСбования ΠΏΡ€ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ Π²Ρ‹Π±ΠΎΡ€Π΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ»Π°ΠΏΠ°Π½ΠΎΠ². ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΎ сравнСниС ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π½Ρ‹Ρ… процСссов Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ давлСния Π΄ΠΎ ΠΈ послС ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ.По Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ Ρ€Π°Π±ΠΎΡ‚Ρ‹ сдСланы Π²Ρ‹Π²ΠΎΠ΄Ρ‹:Из ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π½Ρ‹Ρ… процСссов уровня Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ давлСния Π² Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠΉ Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π° Π΄ΠΎ ΠΈ послС ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ установлСно, Ρ‡Ρ‚ΠΎ послС ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΊΠ»Π°ΠΏΠ°Π½ ΠΈΠΌΠ΅Π΅Ρ‚ большСС быстродСйствиС.БыстродСйствиС ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΎ с 0,35 с, Π΄ΠΎ 0,27 с, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ быстродСйствиС ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ»ΠΎΡΡŒ Π² 1,30 Ρ€Π°Π·Π°.ΠŸΠ΅Ρ€Π΅Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ составляСт ΠΌΠ΅Π½Π΅Π΅ 5%, Π° статичСская ошибка ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½Π° Π½Π° 1,9% ΠΈ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ отсутствуСт

    Associations of cytokines genetic polymorphisms with hypertension progress

    Get PDF
    The article presents results of comparative analysis of cytokines genes polymorphous variants occurrence among hypertension patients with burdened familial history regarding this disease and in a control grou

    Research of biochemical gold recovery method using high-arsenic raw materials

    Get PDF
    This article contains the results of experiments to recover gold from complex mineral raw materials containing more than 15 % arsenic. Laboratory tests showed that standard cyanidation recovers only 26,4 % of gold into the solution. Additional oxidizing reagents used increase the leaching efficiency and enable to recover more than 40 % of gold during subsequent cyanidation. The efficiency has been established for replacement of cyanide with thiourea and thiosulfate solutions. 79,5 %, i.e. the maximum recovery rate, was found in the experiment with preliminary oxidation with T. Ferrooxidans, a bacterial culture, followed by leaching with a thiourea solution

    VIIRS On-Orbit Calibration and Performance Update

    Get PDF
    The S-NPP VIIRS was launched on October 28, 2011 and activated on November 8, and then went through a series of intensive functional tests in order to establish the sensor's baseline characteristics and initial on-orbit performance. With the exception of large optical degradation in the NIR and SWIR spectral regions that is due to pre-launch mirror coating contamination, both the VIIRS instrument and its on-board calibrators continue to operate and function normally. With continuous dedicated effort, it is expected that most of the sensor calibration parameters will continue to meet their design requirements and that high quality data products will be continuously generated and used by the operational as well as research community

    ГидропнСвматичСская подвСска стабилизированной ΠΏΠΎ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ Π³Ρ€ΡƒΠ·ΠΎΠ²ΠΎΠΉ ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΡ‹

    Get PDF
    The subject of research is the horizontally balanced loading platform on soft suspension.Deviation from the horizontal direction of the platform can be caused by:- Displacement of the gravity centre of main unit load placed on it from the vertical axis of the platform;- Displacement of the mass centre of the load dispersed on the platform plane from its vertical axis;- Adding a load which gravity centre does not coincide with the gravity centre of the main load.In specific cases the use of complex and expensive tracking systems of high accuracy to balance loading platforms horizontally can be justified, e.g. when mounting the optical measuring or observation systems on a platform.The aim is to assess the possibility to use the soft hydro-pneumatic suspension with a low power supply unit to provide horizontal balance of platform.The paper offers a soft hydro-pneumatic suspension design of the rectangular loading platform based on four differential hydraulic cylinders to be the supports for two diagonal beams of the platform.The head and rod ends of each pair of the beam hydro-cylinders are cross-pipe connected, and to compensate for a difference between the volumes of head and rod ends of cylinders because of their differentiality, there are hydraulic bag-type accumulators installed in the hydraulic suspension system.The research technique involves the development of a mathematical model of the loading platform hydro-pneumatic suspension followed by its approbation using numerical methods. The paper presents algorithms of engineering analysis of parameters and structural dimensions of hydraulic suspension components.In order to assess the adequacy of the developed mathematical model of a hydro-pneumatic suspension the paper studiesthe an effect of the following factors on the quality of the platform stabilization in the horizon:ο‚· initial volume values of the gas chamber of hydraulic accumulators;ο‚· pressure level of initial pressurization of hydraulic accumulators with nitrogen;ο‚· differentiality degree of the suspension cylinders;ο‚· value of the gravity centre displacement with respect to the vertical axis of platform;ο‚· additional loading of the platform by the load undisplaced with respect to the vertical axis of platform.In the context of calculating a hydro-pneumatic suspension of the platform loading diagonal beam of 2 m length, weighing 500 kg, with a load of 5,000 kg was shown that at the greatest displacement of the load gravity centre to the edge of the beam a deviation of the beam relative to the horizon is one angular degree, at most.The work deals with creating the soft stabilized platform suspensions for stationary systems and mobile units.As a result, a developed mathematical model allows the following:- to show the theoretical possibility to create a soft hydro-pneumatic suspension of the loading platform based on four differential hydro-cylinders and four hydraulic accumulators to provide an acceptable accuracy of the loading platform balance in the horizon when the mass centre of the load placed on it is displaced with respect to the vertical axis of the platform;- to find that the initial stiffness of the hydro-pneumatic suspension, defined by parameters of its hydraulic system, has little effect on the quality of the platform balance in the horizon.ИсслСдована Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ создания гидропнСвматичСской подвСски Π³Ρ€ΡƒΠ·ΠΎΠ²ΠΎΠΉ ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΡ‹, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉ ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΡƒΠ³Π»ΠΎΠ²Ρ‹Ρ… ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠΉ ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΡ‹ ΠΎΡ‚ Π΅Π΅ ΡˆΡ‚Π°Ρ‚Π½ΠΎΠ³ΠΎ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ полоТСния ΠΏΡ€ΠΈ смСщСнии Ρ†Π΅Π½Ρ‚Ρ€Π° масс располоТСнного Π½Π° Π½Π΅ΠΉ Π³Ρ€ΡƒΠ·Π° ΠΎΡ‚ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ оси ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΡ‹. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° гидравличСская схСма подвСски с пСрСкрёстным соСдинСниСм ΠΏΠΎΡ€ΡˆΠ½Π΅Π²Ρ‹Ρ… ΠΈ ΡˆΡ‚ΠΎΠΊΠΎΠ²Ρ‹Ρ… полостСй Π³ΠΈΠ΄Ρ€ΠΎΡ†ΠΈΠ»ΠΈΠ½Π΄Ρ€ΠΎΠ² ΠΈ компСнсациСй Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π³ΠΈΠ΄Ρ€ΠΎΡ†ΠΈΠ»ΠΈΠ½Π΄Ρ€ΠΎΠ² посрСдством газоТидкостных гидроаккумуляторов. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° матСматичСская модСль гидропнСвматичСской подвСски ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Π΅Π΅ расчСта. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΎΡ†Π΅Π½ΠΊΠ° влияния Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ объСма Π³Π°Π·ΠΎΠ²ΠΎΠΉ полости гидроаккумуляторов, номинального давлСния питания гидравличСской систСмы ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π³ΠΈΠ΄Ρ€ΠΎΡ†ΠΈΠ»ΠΈΠ½Π΄Ρ€ΠΎΠ² Π½Π° качСство стабилизации ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΡ‹ ΠΏΠΎ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ. Π”Π°Π½Ρ‹ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΈ ΠΏΠΎ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² гидропнСвматичСской подвСски ΠΏΠΎ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΡŽ Β«ΠΆΠ΅ΡΡ‚ΠΊΠΎΡΡ‚ΡŒ подвСски - качСство стабилизации ΠΏΠΎ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚ΡƒΒ». DOI: 10.7463/aplts.0515.082103

    Π“Π»ΠΈΡ†Π΅Ρ€ΠΈΠ½ΠΎ-содСрТащиС Ρ€Π°Π±ΠΎΡ‡ΠΈΠ΅ Тидкости для Π³ΠΈΠ΄Ρ€ΠΎΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΎΠ² ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ назначСния

    Get PDF
    The cavitation properties of a liquid must be taken into account in the engineering design of hydraulic machines and devices for hydraulic automation in cases when in their working process the absolute pressure in the liquid may drop below atmospheric, and the liquid is in a rarefied state for a certain time. Cold boiling, which occurs at a relatively low temperature and reduced absolute pressure inside or on the surface of the liquid, is considered as hydrostatic cavitation, if the liquid is stationary, or as hydrodynamic cavitation, if the liquid enters conditions under which the velocity head sharply increases in the flow section and the absolute pressure.In accordance with the theory of cavitation, the first phase of cavitation occurs when the absolute pressure in the degassed liquid drops to the value of the saturated vapor pressure and the air dissolved in the liquid, leaving the intermolecular space, turns into microbubbles of undissolved air and becomes a generator of cavitation "nuclei". Of practical interest is a quantitative assessment of the value of the minimum permissible absolute pressure in a real, partially or completely degassed liquid, at which hydrostatic cavitation occurs.Since the pressure of saturated vapor of a liquid is, to a certain extent, associated with the forces of intermolecular interaction, it is necessary to have information on the cavitation properties of technical solutions, including the solution of air in a liquid, since a solute can weaken intermolecular bonds and affect the value of the pressure of saturated vapors of the solvent.Β The article describes an experiment carried out by the authors to evacuate liquids. During the experiment, evacuation of various liquids was carried out using a developed hydraulic vacuum pump with a pneumatic drive.The article presents the technologies of hydrostatic and hydrodynamic degassing of liquids used in the experiment.As a result of experimental studies of the cavitation properties of pure glycerin and glycerin in the form of a 49/51% solution in water, mineral oil and aviation kerosene, quantitative estimates of the permissible absolute pressure in the considered technical fluids and solutions were obtained, its dependence on the saturated vapor pressure, the influence of the degree of hydrodynamic degassing the liquid, and the amount of dissolved substance in it on the strength of the liquid to rupture.In the process of studying the cavitation properties of solutions, it was found that the level of permissible absolute pressure in the solution is greater than that of the solvent. It has been suggested that dissolved solid, liquid or gaseous substances weaken the intermolecular bonds of the solvent and increase the pressure of its saturated vapor.On the basis of the experimental studies, a method for determining the highest rarefaction in solvents and in glycerol solutions has been developed. In addition, a comparative assessment of the cavitation properties of the considered technical fluids is given.ΠšΠ°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ свойства Тидкости Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ Π² ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΌ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ гидравличСских машин ΠΈ устройств Π³ΠΈΠ΄Ρ€ΠΎΠ°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠΊΠΈ Π² случаях, ΠΊΠΎΠ³Π΄Π° Π² ΠΈΡ… Ρ€Π°Π±ΠΎΡ‡Π΅ΠΌ процСссС Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠ³ΠΎ давлСния Π² Тидкости Π½ΠΈΠΆΠ΅ атмосфСрного, ΠΈ ΠΆΠΈΠ΄ΠΊΠΎΡΡ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ΅ врСмя находится Π² Ρ€Π°Π·Ρ€Π΅ΠΆΠ΅Π½Π½ΠΎΠΌ состоянии. Π₯ΠΎΠ»ΠΎΠ΄Π½ΠΎΠ΅ ΠΊΠΈΠΏΠ΅Π½ΠΈΠ΅, происходящСС ΠΏΡ€ΠΈ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½ΠΈΠ·ΠΊΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΈ ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½Π½ΠΎΠΌ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠΌ Π΄Π°Π²Π»Π΅Π½ΠΈΠΈ Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΈΠ»ΠΈ Π½Π° повСрхности Тидкости, рассматриваСтся ΠΊΠ°ΠΊ гидростатичСская кавитация, Ссли ΠΆΠΈΠ΄ΠΊΠΎΡΡ‚ΡŒ Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Π°, ΠΈΠ»ΠΈ ΠΊΠ°ΠΊ гидродинамичСская кавитация, Ссли ΠΆΠΈΠ΄ΠΊΠΎΡΡ‚ΡŒ ΠΏΠΎΠΏΠ°Π΄Π°Π΅Ρ‚ Π² условия, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π² сСчСнии ΠΏΠΎΡ‚ΠΎΠΊΠ° Ρ€Π΅Π·ΠΊΠΎ возрастаСт скоростной Π½Π°ΠΏΠΎΡ€ ΠΈ ΠΏΠ°Π΄Π°Π΅Ρ‚ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠ΅ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅.Π’ соотвСтствии с Ρ‚Π΅ΠΎΡ€ΠΈΠ΅ΠΉ ΠΊΠ°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΈ, пСрвая Ρ„Π°Π·Π° ΠΊΠ°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΈ наступаСт Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠ΅ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Π² Π΄Π΅Π³Π°Π·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Тидкости ΠΏΠ°Π΄Π°Π΅Ρ‚ Π΄ΠΎ значСния давлСния насыщСнных ΠΏΠ°Ρ€ΠΎΠ² ΠΈ растворСнный Π² Тидкости Π²ΠΎΠ·Π΄ΡƒΡ…, покидая мСТмолСкулярноС пространство, прСвращаСтся Π² ΠΌΠΈΠΊΡ€ΠΎΠΏΡƒΠ·Ρ‹Ρ€ΡŒΠΊΠΈ нСрастворСнного Π²ΠΎΠ·Π΄ΡƒΡ…Π° ΠΈ становится Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠΌ ΠΊΠ°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… «ядСр». ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ интСрСс прСдставляСт количСствСнная ΠΎΡ†Π΅Π½ΠΊΠ° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ минимально допустимого Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠ³ΠΎ давлСния Π² Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΉ, частично ΠΈΠ»ΠΈ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ Π΄Π΅Π³Π°Π·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Тидкости, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ гидростатичСская кавитация.ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ насыщСнных ΠΏΠ°Ρ€ΠΎΠ² Тидкости, Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ стСпСни, связано с силами мСТмолСкулярного взаимодСйствия, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠ±Π»Π°Π΄Π°Ρ‚ΡŒ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠ΅ΠΉ ΠΎ ΠΊΠ°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… свойствах тСхничСских растворов, Π² Ρ‚ΠΎΠΌ числС ΠΈ раствора Π²ΠΎΠ·Π΄ΡƒΡ…Π° Π² Тидкости, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ растворСнноС вСщСство ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΡΠ»Π°Π±Π»ΡΡ‚ΡŒ мСТмолСкулярныС связи ΠΈ Π²Π»ΠΈΡΡ‚ΡŒ Π½Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ давлСния насыщСнных ΠΏΠ°Ρ€ΠΎΠ² растворитСля.Β Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ описан ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΉ Π°Π²Ρ‚ΠΎΡ€Π°ΠΌΠΈ экспСримСнт ΠΏΠΎ Π²Π°ΠΊΡƒΡƒΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ ТидкостСй. Π’ процСссС экспСримСнта Π²Π°ΠΊΡƒΡƒΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ТидкостСй ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΠ»ΠΎΡΡŒ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ гидравличСского Π²Π°ΠΊΡƒΡƒΠΌΠ½ΠΎΠ³ΠΎ насоса с пнСвматичСским ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΎΠΌ.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСны ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π² экспСримСнтС Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ гидростатичСской ΠΈ гидродинамичСской Π΄Π΅Π³Π°Π·Π°Ρ†ΠΈΠΉ Тидкости.Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований ΠΊΠ°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… свойств чистого Π³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ½Π° ΠΈ Π³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ½Π° Π² Π²ΠΈΠ΄Π΅ раствора 49/51 % Π² Π²ΠΎΠ΄Π΅, ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ масла ΠΈ Π°Π²ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ кСросина, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ количСствСнныС ΠΎΡ†Π΅Π½ΠΊΠΈ допустимого Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠ³ΠΎ давлСния Π² рассмотрСнных тСхничСских Тидкостях ΠΈ растворах, Π΅Π³ΠΎ зависимости ΠΎΡ‚ давлСния насыщСнных ΠΏΠ°Ρ€ΠΎΠ², влияния стСпСни гидродинамичСской Π΄Π΅Π³Π°Π·Π°Ρ†ΠΈΠΈ Тидкости, ΠΈ количСства растворСнного Π² Π½Π΅ΠΉ вСщСства Π½Π° ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ Тидкости Π½Π° Ρ€Π°Π·Ρ€Ρ‹Π².Π’ процСссС исслСдования ΠΊΠ°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… свойств растворов установлСно, Ρ‡Ρ‚ΠΎ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ допустимого Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠ³ΠΎ давлСния Π² растворС большС Ρ‚ΠΎΠ³ΠΎ ΠΆΠ΅ показатСля Ρƒ растворитСля. Высказано ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ растворСнныС Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ΅, ΠΆΠΈΠ΄ΠΊΠΎΠ΅ ΠΈΠ»ΠΈ Π³Π°Π·ΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΠ΅ вСщСства ΠΎΡΠ»Π°Π±Π»ΡΡŽΡ‚ мСТмолСкулярныС связи растворитСля ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‚ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Π΅Π³ΠΎ насыщСнных ΠΏΠ°Ρ€ΠΎΠ².На основС ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° опрСдСлСния наибольшСго разрСТСния Π² растворитСлях ΠΈ Π² растворах Π³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ½Π°. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π΄Π°Π½Π° ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΎΡ†Π΅Π½ΠΊΠ° ΠΊΠ°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… свойств рассмотрСнных тСхничСских ТидкостСй.Β  Β 

    НаруТный цилиндричСский насадок с управляСмым Π²Π°ΠΊΡƒΡƒΠΌΠΎΠΌ

    Get PDF
    There is a developed design of the external cylindrical nozzle with a vacuum camera. The paper studies the nozzle controllability of flow rate via regulated connection of the evacuated chamber to the atmosphere through an air throttle. Working capacity of the nozzle with inlet round or triangular orifice are researched. The gap is provided in the nozzle design between the external wall of the inlet orifice and the end face of the straight case in the nozzle case. The presented mathematical model of the nozzle with the evacuated chamber allows us to estimate the expected vacuum amount in the compressed section of a stream and maximum permissible absolute pressure at the inlet orifice. The paper gives experimental characteristics of the fluid flow process through the nozzle for different values of internal diameter of a straight case and an extent of its end face remoteness from an external wall of the inlet orifice. It estimates how geometry of nozzle constructive elements influences on the volume flow rate. It is established that the nozzle capacity significantly depends on the shape of inlet orifice. Triangular orifice nozzles steadily work in the mode of completely filled flow area of the straight case at much more amounts of the limit pressure of the flow. Vacuum depth in the evacuated chamber also depends on the shape of inlet orifice: the greatest vacuum is reached in a nozzle with the triangular orifice which 1.5 times exceeds the greatest vacuum with the round orifice. Possibility to control nozzle capacity through the regulated connection of the evacuated chamber to the atmosphere was experimentally estimated, thus depth of flow rate regulation of the nozzle with a triangular orifice was 45% in comparison with 10% regulation depth of the nozzle with a round orifice. Depth of regulation calculated by a mathematical model appeared to be much more. The paper presents experimental dependences of the flow coefficients of nozzle input orifice on the vacuum depth in the chamber. Research findings allowed us to express opinion that accepted in the works on "Fluid Mechanics " equality of pressure values in the center of cross-stream gravity and in its surrounding steam-gas medium is incorrect. The paper shows a possibility to create the nozzle design with updated device to connect a chamber to the atmosphere by the air throttle, which is flow pressure-controlled thus providing the nozzle operation as the flow rate stabilizer. The publication supplements information on nozzles provided in literature on " Fluid Mechanics". TheΒ developed design of the external cylindrical nozzle with controlled vacuum and of research results of its working capacity can be taken into consideration in designing hydraulic systems and devices of hydro-automatic equipment.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΈ Π°ΠΏΡ€ΠΎΠ±ΠΈΡ€ΠΎΠ²Π°Π½Π° конструкция Π½Π°Ρ€ΡƒΠΆΠ½ΠΎΠ³ΠΎ цилиндричСского насадка с Π²Π°ΠΊΡƒΡƒΠΌΠ½ΠΎΠΉ ΠΊΠ°ΠΌΠ΅Ρ€ΠΎΠΉ. Вакуумная ΠΊΠ°ΠΌΠ΅Ρ€Π° ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π° Π·Π° счёт удалСния Ρ‚ΠΎΡ€Ρ†Π° Π³ΠΈΠ»ΡŒΠ·Ρ‹ насадка Π½Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ расстояниС ΠΎΡ‚ плоскости стСнки, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ отвСрстиС с острой ΠΊΡ€ΠΎΠΌΠΊΠΎΠΉ. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ характСристики насадков с Π²Ρ…ΠΎΠ΄Π½Ρ‹ΠΌ отвСрстиСм ΠΊΡ€ΡƒΠ³Π»ΠΎΠΉ ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ ΠΈ Π΄Π°Π½Ρ‹ значСния ΠΈΡ… коэффициСнтов ΠΎΠ±ΡŠΡ‘ΠΌΠ½ΠΎΠ³ΠΎ расхода. ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π²Π°ΠΊΡƒΡƒΠΌΠ° Π² ΠΊΠ°ΠΌΠ΅Ρ€Π΅ ΠΏΡƒΡ‚Ρ‘ΠΌ Π΅Ρ‘ ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ ΠΊ атмосфСрС позволяСт ΡƒΠΏΡ€Π°Π²Π»ΡΡ‚ΡŒ пропускной ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒΡŽ насадка. УстановлСно, Ρ‡Ρ‚ΠΎ пропускная ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ отвСрстия Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ ΠΏΡ€ΠΎΠΏΡƒΡΠΊΠ½ΡƒΡŽ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ отвСрстия ΠΊΡ€ΡƒΠ³Π»ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ ΠΏΡ€ΠΈ Ρ€Π°Π²Π½Ρ‹Ρ… площадях ΠΈΡ… ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠ³ΠΎ сСчСния. Насадок с Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ Π²Ρ…ΠΎΠ΄Π½Ρ‹ΠΌ отвСрстиСм устойчиво Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ ΠΏΡ€ΠΈ высоких Π½Π°ΠΏΠΎΡ€Π°Ρ… истСчСния. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° адСкватности матСматичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ насадка ΠΏΠΎΠΊΠ°Π·Π°Π»Π°, Ρ‡Ρ‚ΠΎ постулируСмоС Π² Ρ€Π°Π±ΠΎΡ‚Π°Ρ… ΠΏΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠ΅ Тидкости постоянство гидростатичСского Π½Π°ΠΏΠΎΡ€Π° Π² сСчСнии струи Π½Π΅ являСтся ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½Ρ‹ΠΌ. ΠŸΠΎΠ΄ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ Π²Π°ΠΊΡƒΡƒΠΌΠ½ΠΎΠΉ ΠΊΠ°ΠΌΠ΅Ρ€Ρ‹ насадка ΠΊ атмосфСрС посрСдством Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ дроссСля, управляСмого ΠΏΠΎ давлСнию истСчСния, позволяСт ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΡ‚ΡŒ ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΡŽ расхода Ρ‡Π΅Ρ€Π΅Π· насадок ΠΏΡ€ΠΈ колСбаниях давлСния ΠΏΠΈΡ‚Π°ΡŽΡ‰Π΅ΠΉ установки. ΠšΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ слова: Π½Π°Ρ€ΡƒΠΆΠ½Ρ‹ΠΉ цилиндричСский насадок с Π²Π°ΠΊΡƒΡƒΠΌΠ½ΠΎΠΉ ΠΊΠ°ΠΌΠ΅Ρ€ΠΎΠΉ, истСчСниС Тидкости Ρ‡Π΅Ρ€Π΅Π· отвСрстиС Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹, пропускная ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ насадка, Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ΠΉ Π²Π°ΠΊΡƒΡƒΠΌ Π² ΠΊΠ°ΠΌΠ΅Ρ€Π΅. DOI: 10.7463/aplts.0315.078301
    • …
    corecore