327 research outputs found
Features of endothelial dysfunction in renal hypertension
Endothelial dysfunction is a marker of vascular disease, as well as the development and progression of hypertension in chronic kidney disease.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3574
ΠΡΠ±ΠΎΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΏΠ½Π΅Π²ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠ΅Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΡΠ΅Π΄ΡΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π° ΠΏΡΡΠΌΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ
Reducing pneumatic valves, which are part of modern pneumatic control systems, are widely used in the automation of production and technological processes in various fields of technology. The efficiency of using pressure reducing valves depends on their parameters and characteristics. To select the optimal parameters of pressure reducing valves, various methods are used based on the search for the minimum of the target (target or criteria) function.The object of study is a three-line direct-acting pressure reducing valve, which ensures the determination of its optimal parameters. To calculate the optimal parameters of the pressure reducing valve, the method of orthogonal experimental design was applied. The main advantage of this method is that in this case all variables are varied simultaneously.The article presents the design features of a three-line direct-acting pressure reducing valve.The developed mathematical model of a pressure reducing valve is presented, which is a system of equations for a three-line direct-acting pressure reducing valve, which should be used to select the optimal parameters of the pressure reducing valve.To calculate the optimal parameters of the pressure reducing valve, the method of orthogonal experimental design was used. As an optimality criterion, the integral criterion of the squared error of the transient process, the change in the pressure level in the outlet line of the valve, was chosen.The optimal parameters of the pressure reducing valve are found, and transient processes of pressure change in the outlet line of the pressure reducing valve are calculated. The main requirements for optimization and selection of the optimal parameters of pressure reducing valves are formulated. A comparison of the transient processes of the outlet pressure before and after optimization is given.Based on the results of the work, the following conclusions were drawn:From the obtained comparative results of the transient processes of the level of outlet pressure in the outlet of the pressure reducing valve before and after optimization, it was found that after optimization the pressure reducing valve has a faster response.The speed has been increased from 0.35 s to 0.27 s, that is, the speed has increased by 1.30 times.The transient overshoot is less than 5%, and the static error is reduced by 1.9% and is completely eliminated.Π Π΅Π΄ΡΠΊΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΏΠ½Π΅Π²ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠ»Π°ΠΏΠ°Π½Ρ, Π²Ρ
ΠΎΠ΄ΡΡΠΈΠ΅ Π² ΡΠΎΡΡΠ°Π² ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
ΠΏΠ½Π΅Π²ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΈΡΡΠ΅ΠΌ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ, Π½Π°Ρ
ΠΎΠ΄ΡΡ ΡΠΈΡΠΎΠΊΠΎΠ΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΈ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·Π°ΡΠΈΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΈ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΎΠ±Π»Π°ΡΡΡΡ
ΡΠ΅Ρ
Π½ΠΈΠΊΠΈ. ΠΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅Π΄ΡΠΊΡΠΈΠΎΠ½Π½ΡΡ
ΠΊΠ»Π°ΠΏΠ°Π½ΠΎΠ² Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ. ΠΠ»Ρ Π²ΡΠ±ΠΎΡΠ° ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ΅Π΄ΡΠΊΡΠΈΠΎΠ½Π½ΡΡ
ΠΊΠ»Π°ΠΏΠ°Π½ΠΎΠ² ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΠ΅ Π½Π° ΠΏΠΎΠΈΡΠΊΠ΅ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΠ΅Π»Π΅Π²ΠΎΠΉ (ΡΠ΅Π»Π΅Π²ΡΡ
ΠΈΠ»ΠΈ ΠΊΡΠΈΡΠ΅ΡΠΈΠ΅Π²) ΡΡΠ½ΠΊΡΠΈΠΈ.ΠΠ±ΡΠ΅ΠΊΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ β ΡΡΠ΅Ρ
Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠΉ ΡΠ΅Π΄ΡΠΊΡΠΈΠΎΠ½Π½ΡΠΉ ΠΊΠ»Π°ΠΏΠ°Π½ ΠΏΡΡΠΌΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡΠΈΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
Π΅Π³ΠΎ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ².Β ΠΠ»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ΅Π΄ΡΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π° ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ ΠΌΠ΅ΡΠΎΠ΄ ΠΎΡΡΠΎΠ³ΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ. ΠΡΠ½ΠΎΠ²Π½ΠΎΠ΅ Π΄ΠΎΡΡΠΎΠΈΠ½ΡΡΠ²ΠΎ ΡΡΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠΎΠΌ, ΡΡΠΎ Π² ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ Π²Π°ΡΡΠΈΡΡΡΡΡΡ Π²ΡΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅.Π ΡΡΠ°ΡΡΠ΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠ²Π½ΡΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΡΠ΅Ρ
Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΡΠ΅Π΄ΡΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π° ΠΏΡΡΠΌΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ.ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π° ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½Π°Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΡΠ΅Π΄ΡΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π°, Β ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡΡΡ ΡΠΎΠ±ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΡΡΠ΅Ρ
Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΡΠ΅Π΄ΡΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π° ΠΏΡΡΠΌΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ, ΠΊΠΎΡΠΎΡΡΡ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄Π»Ρ Π²ΡΠ±ΠΎΡΠ° ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ΅Π΄ΡΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π°.ΠΠ»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ΅Π΄ΡΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ ΠΌΠ΅ΡΠΎΠ΄ ΠΎΡΡΠΎΠ³ΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΊΡΠΈΡΠ΅ΡΠΈΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΡΡΠΈ Π²ΡΠ±ΡΠ°Π½ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΡΠ½ΡΠΉ ΠΊΡΠΈΡΠ΅ΡΠΈΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° ΠΎΡΠΈΠ±ΠΊΠΈ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°, ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΡΠΎΠ²Π½Ρ Π΄Π°Π²Π»Π΅Π½ΠΈΡ Π² Π²ΡΡ
ΠΎΠ΄Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ ΠΊΠ»Π°ΠΏΠ°Π½Π°.ΠΠ°ΠΉΠ΄Π΅Π½Ρ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΡΠ΅Π΄ΡΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π°, ΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½Ρ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Π½ΡΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π΄Π°Π²Π»Π΅Π½ΠΈΡ Π² Π²ΡΡ
ΠΎΠ΄Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ ΡΠ΅Π΄ΡΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π°. Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΈ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΠΈ Π²ΡΠ±ΠΎΡΠ΅ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ΅Π΄ΡΠΊΡΠΈΠΎΠ½Π½ΡΡ
ΠΊΠ»Π°ΠΏΠ°Π½ΠΎΠ². ΠΡΠΈΠ²Π΅Π΄Π΅Π½ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Π½ΡΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π²ΡΡ
ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ Π΄ΠΎ ΠΈ ΠΏΠΎΡΠ»Π΅ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ.ΠΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ ΡΠ°Π±ΠΎΡΡ ΡΠ΄Π΅Π»Π°Π½Ρ Π²ΡΠ²ΠΎΠ΄Ρ:ΠΠ· ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Π½ΡΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΡΡΠΎΠ²Π½Ρ Π²ΡΡ
ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ Π² Π²ΡΡ
ΠΎΠ΄Π½ΠΎΠΉ ΡΠ΅Π΄ΡΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΠΏΠ°Π½Π° Π΄ΠΎ ΠΈ ΠΏΠΎΡΠ»Π΅ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΠΎΡΠ»Π΅ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΡΠ΅Π΄ΡΠΊΡΠΈΠΎΠ½Π½ΡΠΉ ΠΊΠ»Π°ΠΏΠ°Π½ ΠΈΠΌΠ΅Π΅Ρ Π±ΠΎΠ»ΡΡΠ΅Π΅ Π±ΡΡΡΡΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅.ΠΡΡΡΡΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΎ Ρ 0,35 Ρ, Π΄ΠΎ 0,27 Ρ, ΡΠΎ Π΅ΡΡΡ Π±ΡΡΡΡΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠ²Π΅Π»ΠΈΡΠΈΠ»ΠΎΡΡ Π² 1,30 ΡΠ°Π·Π°.ΠΠ΅ΡΠ΅ΡΠ΅Π³ΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΌΠ΅Π½Π΅Π΅ 5%, Π° ΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΎΡΠΈΠ±ΠΊΠ° ΡΠΌΠ΅Π½ΡΡΠ΅Π½Π° Π½Π° 1,9% ΠΈ ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ ΠΎΡΡΡΡΡΡΠ²ΡΠ΅Ρ
Associations of cytokines genetic polymorphisms with hypertension progress
The article presents results of comparative analysis of cytokines genes polymorphous variants occurrence among hypertension patients with burdened familial history regarding this disease and in a control grou
Research of biochemical gold recovery method using high-arsenic raw materials
This article contains the results of experiments to recover gold from complex mineral raw materials containing more than 15 % arsenic. Laboratory tests showed that standard cyanidation recovers only 26,4 % of gold into the solution. Additional oxidizing reagents used increase the leaching efficiency and enable to recover more than 40 % of gold during subsequent cyanidation. The efficiency has been established for replacement of cyanide with thiourea and thiosulfate solutions. 79,5 %, i.e. the maximum recovery rate, was found in the experiment with preliminary oxidation with T. Ferrooxidans, a bacterial culture, followed by leaching with a thiourea solution
VIIRS On-Orbit Calibration and Performance Update
The S-NPP VIIRS was launched on October 28, 2011 and activated on November 8, and then went through a series of intensive functional tests in order to establish the sensor's baseline characteristics and initial on-orbit performance. With the exception of large optical degradation in the NIR and SWIR spectral regions that is due to pre-launch mirror coating contamination, both the VIIRS instrument and its on-board calibrators continue to operate and function normally. With continuous dedicated effort, it is expected that most of the sensor calibration parameters will continue to meet their design requirements and that high quality data products will be continuously generated and used by the operational as well as research community
ΠΠΈΠ΄ΡΠΎΠΏΠ½Π΅Π²ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΏΠΎΠ΄Π²Π΅ΡΠΊΠ° ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΏΠΎ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΡ Π³ΡΡΠ·ΠΎΠ²ΠΎΠΉ ΠΏΠ»Π°ΡΡΠΎΡΠΌΡ
The subject of research is the horizontally balanced loading platform on soft suspension.Deviation from the horizontal direction of the platform can be caused by:- Displacement of the gravity centre of main unit load placed on it from the vertical axis of the platform;- Displacement of the mass centre of the load dispersed on the platform plane from its vertical axis;- Adding a load which gravity centre does not coincide with the gravity centre of the main load.In specific cases the use of complex and expensive tracking systems of high accuracy to balance loading platforms horizontally can be justified, e.g. when mounting the optical measuring or observation systems on a platform.The aim is to assess the possibility to use the soft hydro-pneumatic suspension with a low power supply unit to provide horizontal balance of platform.The paper offers a soft hydro-pneumatic suspension design of the rectangular loading platform based on four differential hydraulic cylinders to be the supports for two diagonal beams of the platform.The head and rod ends of each pair of the beam hydro-cylinders are cross-pipe connected, and to compensate for a difference between the volumes of head and rod ends of cylinders because of their differentiality, there are hydraulic bag-type accumulators installed in the hydraulic suspension system.The research technique involves the development of a mathematical model of the loading platform hydro-pneumatic suspension followed by its approbation using numerical methods. The paper presents algorithms of engineering analysis of parameters and structural dimensions of hydraulic suspension components.In order to assess the adequacy of the developed mathematical model of a hydro-pneumatic suspension the paper studiesthe an effect of the following factors on the quality of the platform stabilization in the horizon:ο· initial volume values of the gas chamber of hydraulic accumulators;ο· pressure level of initial pressurization of hydraulic accumulators with nitrogen;ο· differentiality degree of the suspension cylinders;ο· value of the gravity centre displacement with respect to the vertical axis of platform;ο· additional loading of the platform by the load undisplaced with respect to the vertical axis of platform.In the context of calculating a hydro-pneumatic suspension of the platform loading diagonal beam of 2 m length, weighing 500 kg, with a load of 5,000 kg was shown that at the greatest displacement of the load gravity centre to the edge of the beam a deviation of the beam relative to the horizon is one angular degree, at most.The work deals with creating the soft stabilized platform suspensions for stationary systems and mobile units.As a result, a developed mathematical model allows the following:- to show the theoretical possibility to create a soft hydro-pneumatic suspension of the loading platform based on four differential hydro-cylinders and four hydraulic accumulators to provide an acceptable accuracy of the loading platform balance in the horizon when the mass centre of the load placed on it is displaced with respect to the vertical axis of the platform;- to find that the initial stiffness of the hydro-pneumatic suspension, defined by parameters of its hydraulic system, has little effect on the quality of the platform balance in the horizon.ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ Π³ΠΈΠ΄ΡΠΎΠΏΠ½Π΅Π²ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠΎΠ΄Π²Π΅ΡΠΊΠΈ Π³ΡΡΠ·ΠΎΠ²ΠΎΠΉ ΠΏΠ»Π°ΡΡΠΎΡΠΌΡ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡΠ΅ΠΉ ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΡΡ
ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠΉ ΠΏΠ»Π°ΡΡΠΎΡΠΌΡ ΠΎΡ Π΅Π΅ ΡΡΠ°ΡΠ½ΠΎΠ³ΠΎ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΈ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠΈ ΡΠ΅Π½ΡΡΠ° ΠΌΠ°ΡΡ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π½Π° Π½Π΅ΠΉ Π³ΡΡΠ·Π° ΠΎΡ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΡΠΈ ΠΏΠ»Π°ΡΡΠΎΡΠΌΡ. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° Π³ΠΈΠ΄ΡΠ°Π²Π»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡ
Π΅ΠΌΠ° ΠΏΠΎΠ΄Π²Π΅ΡΠΊΠΈ Ρ ΠΏΠ΅ΡΠ΅ΠΊΡΡΡΡΠ½ΡΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΡΡΠ½Π΅Π²ΡΡ
ΠΈ ΡΡΠΎΠΊΠΎΠ²ΡΡ
ΠΏΠΎΠ»ΠΎΡΡΠ΅ΠΉ Π³ΠΈΠ΄ΡΠΎΡΠΈΠ»ΠΈΠ½Π΄ΡΠΎΠ² ΠΈ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΠΈΠ΅ΠΉ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΡΡΠΈ Π³ΠΈΠ΄ΡΠΎΡΠΈΠ»ΠΈΠ½Π΄ΡΠΎΠ² ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²ΠΎΠΌ Π³Π°Π·ΠΎΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΡΡ
Π³ΠΈΠ΄ΡΠΎΠ°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠΎΠ². Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ Π³ΠΈΠ΄ΡΠΎΠΏΠ½Π΅Π²ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠΎΠ΄Π²Π΅ΡΠΊΠΈ ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° Π΅Π΅ ΡΠ°ΡΡΠ΅ΡΠ°. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΎΡΠ΅Π½ΠΊΠ° Π²Π»ΠΈΡΠ½ΠΈΡ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅ΠΌΠ° Π³Π°Π·ΠΎΠ²ΠΎΠΉ ΠΏΠΎΠ»ΠΎΡΡΠΈ Π³ΠΈΠ΄ΡΠΎΠ°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠΎΠ², Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ ΠΏΠΈΡΠ°Π½ΠΈΡ Π³ΠΈΠ΄ΡΠ°Π²Π»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΈ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΡΡΠΈ Π³ΠΈΠ΄ΡΠΎΡΠΈΠ»ΠΈΠ½Π΄ΡΠΎΠ² Π½Π° ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠ»Π°ΡΡΠΎΡΠΌΡ ΠΏΠΎ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΡ. ΠΠ°Π½Ρ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΈ ΠΏΠΎ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π³ΠΈΠ΄ΡΠΎΠΏΠ½Π΅Π²ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠΎΠ΄Π²Π΅ΡΠΊΠΈ ΠΏΠΎ ΠΊΡΠΈΡΠ΅ΡΠΈΡ Β«ΠΆΠ΅ΡΡΠΊΠΎΡΡΡ ΠΏΠΎΠ΄Π²Π΅ΡΠΊΠΈ - ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠΎ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΡΒ». DOI: 10.7463/aplts.0515.082103
ΠΠ»ΠΈΡΠ΅ΡΠΈΠ½ΠΎ-ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠ΅ ΡΠ°Π±ΠΎΡΠΈΠ΅ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ Π΄Π»Ρ Π³ΠΈΠ΄ΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄ΠΎΠ² ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΈΡ
The cavitation properties of a liquid must be taken into account in the engineering design of hydraulic machines and devices for hydraulic automation in cases when in their working process the absolute pressure in the liquid may drop below atmospheric, and the liquid is in a rarefied state for a certain time. Cold boiling, which occurs at a relatively low temperature and reduced absolute pressure inside or on the surface of the liquid, is considered as hydrostatic cavitation, if the liquid is stationary, or as hydrodynamic cavitation, if the liquid enters conditions under which the velocity head sharply increases in the flow section and the absolute pressure.In accordance with the theory of cavitation, the first phase of cavitation occurs when the absolute pressure in the degassed liquid drops to the value of the saturated vapor pressure and the air dissolved in the liquid, leaving the intermolecular space, turns into microbubbles of undissolved air and becomes a generator of cavitation "nuclei". Of practical interest is a quantitative assessment of the value of the minimum permissible absolute pressure in a real, partially or completely degassed liquid, at which hydrostatic cavitation occurs.Since the pressure of saturated vapor of a liquid is, to a certain extent, associated with the forces of intermolecular interaction, it is necessary to have information on the cavitation properties of technical solutions, including the solution of air in a liquid, since a solute can weaken intermolecular bonds and affect the value of the pressure of saturated vapors of the solvent.Β The article describes an experiment carried out by the authors to evacuate liquids. During the experiment, evacuation of various liquids was carried out using a developed hydraulic vacuum pump with a pneumatic drive.The article presents the technologies of hydrostatic and hydrodynamic degassing of liquids used in the experiment.As a result of experimental studies of the cavitation properties of pure glycerin and glycerin in the form of a 49/51% solution in water, mineral oil and aviation kerosene, quantitative estimates of the permissible absolute pressure in the considered technical fluids and solutions were obtained, its dependence on the saturated vapor pressure, the influence of the degree of hydrodynamic degassing the liquid, and the amount of dissolved substance in it on the strength of the liquid to rupture.In the process of studying the cavitation properties of solutions, it was found that the level of permissible absolute pressure in the solution is greater than that of the solvent. It has been suggested that dissolved solid, liquid or gaseous substances weaken the intermolecular bonds of the solvent and increase the pressure of its saturated vapor.On the basis of the experimental studies, a method for determining the highest rarefaction in solvents and in glycerol solutions has been developed. In addition, a comparative assessment of the cavitation properties of the considered technical fluids is given.ΠΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΡΡΠΈΡΡΠ²Π°ΡΡ Π² ΠΈΠ½ΠΆΠ΅Π½Π΅ΡΠ½ΠΎΠΌ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ Π³ΠΈΠ΄ΡΠ°Π²Π»ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ°ΡΠΈΠ½ ΠΈ ΡΡΡΡΠΎΠΉΡΡΠ² Π³ΠΈΠ΄ΡΠΎΠ°Π²ΡΠΎΠΌΠ°ΡΠΈΠΊΠΈ Π² ΡΠ»ΡΡΠ°ΡΡ
, ΠΊΠΎΠ³Π΄Π° Π² ΠΈΡ
ΡΠ°Π±ΠΎΡΠ΅ΠΌ ΠΏΡΠΎΡΠ΅ΡΡΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ Π² ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ Π½ΠΈΠΆΠ΅ Π°ΡΠΌΠΎΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ, ΠΈ ΠΆΠΈΠ΄ΠΊΠΎΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ΅ Π²ΡΠ΅ΠΌΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π² ΡΠ°Π·ΡΠ΅ΠΆΠ΅Π½Π½ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ. Π₯ΠΎΠ»ΠΎΠ΄Π½ΠΎΠ΅ ΠΊΠΈΠΏΠ΅Π½ΠΈΠ΅, ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΡΡΠ΅Π΅ ΠΏΡΠΈ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½ΠΈΠ·ΠΊΠΎΠΉ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ΅ ΠΈ ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½Π½ΠΎΠΌ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎΠΌ Π΄Π°Π²Π»Π΅Π½ΠΈΠΈ Π²Π½ΡΡΡΠΈ ΠΈΠ»ΠΈ Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ, ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ ΠΊΠ°ΠΊ Π³ΠΈΠ΄ΡΠΎΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΊΠ°Π²ΠΈΡΠ°ΡΠΈΡ, Π΅ΡΠ»ΠΈ ΠΆΠΈΠ΄ΠΊΠΎΡΡΡ Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Π°, ΠΈΠ»ΠΈ ΠΊΠ°ΠΊ Π³ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΊΠ°Π²ΠΈΡΠ°ΡΠΈΡ, Π΅ΡΠ»ΠΈ ΠΆΠΈΠ΄ΠΊΠΎΡΡΡ ΠΏΠΎΠΏΠ°Π΄Π°Π΅Ρ Π² ΡΡΠ»ΠΎΠ²ΠΈΡ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΡΡ
Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΏΠΎΡΠΎΠΊΠ° ΡΠ΅Π·ΠΊΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ ΡΠΊΠΎΡΠΎΡΡΠ½ΠΎΠΉ Π½Π°ΠΏΠΎΡ ΠΈ ΠΏΠ°Π΄Π°Π΅Ρ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎΠ΅ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅.Π ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΡΠ΅ΠΎΡΠΈΠ΅ΠΉ ΠΊΠ°Π²ΠΈΡΠ°ΡΠΈΠΈ, ΠΏΠ΅ΡΠ²Π°Ρ ΡΠ°Π·Π° ΠΊΠ°Π²ΠΈΡΠ°ΡΠΈΠΈ Π½Π°ΡΡΡΠΏΠ°Π΅Ρ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎΠ΅ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Π² Π΄Π΅Π³Π°Π·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ ΠΏΠ°Π΄Π°Π΅Ρ Π΄ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π΄Π°Π²Π»Π΅Π½ΠΈΡ Π½Π°ΡΡΡΠ΅Π½Π½ΡΡ
ΠΏΠ°ΡΠΎΠ² ΠΈ ΡΠ°ΡΡΠ²ΠΎΡΠ΅Π½Π½ΡΠΉ Π² ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ Π²ΠΎΠ·Π΄ΡΡ
, ΠΏΠΎΠΊΠΈΠ΄Π°Ρ ΠΌΠ΅ΠΆΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠ΅ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²ΠΎ, ΠΏΡΠ΅Π²ΡΠ°ΡΠ°Π΅ΡΡΡ Π² ΠΌΠΈΠΊΡΠΎΠΏΡΠ·ΡΡΡΠΊΠΈ Π½Π΅ΡΠ°ΡΡΠ²ΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π²ΠΎΠ·Π΄ΡΡ
Π° ΠΈ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ Π³Π΅Π½Π΅ΡΠ°ΡΠΎΡΠΎΠΌ ΠΊΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Β«ΡΠ΄Π΅ΡΒ». ΠΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ ΠΎΡΠ΅Π½ΠΊΠ° Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎ Π΄ΠΎΠΏΡΡΡΠΈΠΌΠΎΠ³ΠΎ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ Π² ΡΠ΅Π°Π»ΡΠ½ΠΎΠΉ, ΡΠ°ΡΡΠΈΡΠ½ΠΎ ΠΈΠ»ΠΈ ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ Π΄Π΅Π³Π°Π·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΉ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ Π³ΠΈΠ΄ΡΠΎΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΊΠ°Π²ΠΈΡΠ°ΡΠΈΡ.ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Π½Π°ΡΡΡΠ΅Π½Π½ΡΡ
ΠΏΠ°ΡΠΎΠ² ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ, Π² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΡΠ²ΡΠ·Π°Π½ΠΎ Ρ ΡΠΈΠ»Π°ΠΌΠΈ ΠΌΠ΅ΠΆΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ, Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠ±Π»Π°Π΄Π°ΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠ΅ΠΉ ΠΎ ΠΊΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
ΡΠ²ΠΎΠΉΡΡΠ²Π°Ρ
ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ°ΡΡΠ²ΠΎΡΠΎΠ², Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ ΠΈ ΡΠ°ΡΡΠ²ΠΎΡΠ° Π²ΠΎΠ·Π΄ΡΡ
Π° Π² ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ°ΡΡΠ²ΠΎΡΠ΅Π½Π½ΠΎΠ΅ Π²Π΅ΡΠ΅ΡΡΠ²ΠΎ ΠΌΠΎΠΆΠ΅Ρ ΠΎΡΠ»Π°Π±Π»ΡΡΡ ΠΌΠ΅ΠΆΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΠ΅ ΡΠ²ΡΠ·ΠΈ ΠΈ Π²Π»ΠΈΡΡΡ Π½Π° Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π΄Π°Π²Π»Π΅Π½ΠΈΡ Π½Π°ΡΡΡΠ΅Π½Π½ΡΡ
ΠΏΠ°ΡΠΎΠ² ΡΠ°ΡΡΠ²ΠΎΡΠΈΡΠ΅Π»Ρ.Β Π ΡΡΠ°ΡΡΠ΅ ΠΎΠΏΠΈΡΠ°Π½ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΠΉ Π°Π²ΡΠΎΡΠ°ΠΌΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½Ρ ΠΏΠΎ Π²Π°ΠΊΡΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ΅ΠΉ. Π ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ° Π²Π°ΠΊΡΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ΅ΠΉ ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ»ΠΎΡΡ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠ³ΠΎ Π³ΠΈΠ΄ΡΠ°Π²Π»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π²Π°ΠΊΡΡΠΌΠ½ΠΎΠ³ΠΎ Π½Π°ΡΠΎΡΠ° Ρ ΠΏΠ½Π΅Π²ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΎΠΌ.Π ΡΡΠ°ΡΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π½ΡΠ΅ Π² ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ΅ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π³ΠΈΠ΄ΡΠΎΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ Π³ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄Π΅Π³Π°Π·Π°ΡΠΈΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ.Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΡ
ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΊΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΡΠΈΡΡΠΎΠ³ΠΎ Π³Π»ΠΈΡΠ΅ΡΠΈΠ½Π° ΠΈ Π³Π»ΠΈΡΠ΅ΡΠΈΠ½Π° Π² Π²ΠΈΠ΄Π΅ ΡΠ°ΡΡΠ²ΠΎΡΠ° 49/51 % Π² Π²ΠΎΠ΄Π΅, ΠΌΠΈΠ½Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ»Π° ΠΈ Π°Π²ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ΅ΡΠΎΡΠΈΠ½Π°, ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΠΎΡΠ΅Π½ΠΊΠΈ Π΄ΠΎΠΏΡΡΡΠΈΠΌΠΎΠ³ΠΎ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ Π² ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π½ΡΡ
ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΆΠΈΠ΄ΠΊΠΎΡΡΡΡ
ΠΈ ΡΠ°ΡΡΠ²ΠΎΡΠ°Ρ
, Π΅Π³ΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π΄Π°Π²Π»Π΅Π½ΠΈΡ Π½Π°ΡΡΡΠ΅Π½Π½ΡΡ
ΠΏΠ°ΡΠΎΠ², Π²Π»ΠΈΡΠ½ΠΈΡ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π³ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄Π΅Π³Π°Π·Π°ΡΠΈΠΈ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ, ΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΡΠ°ΡΡΠ²ΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π² Π½Π΅ΠΉ Π²Π΅ΡΠ΅ΡΡΠ²Π° Π½Π° ΠΏΡΠΎΡΠ½ΠΎΡΡΡ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ Π½Π° ΡΠ°Π·ΡΡΠ².Π ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΊΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΡΠ°ΡΡΠ²ΠΎΡΠΎΠ² ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΡΡΠΎΠ²Π΅Π½Ρ Π΄ΠΎΠΏΡΡΡΠΈΠΌΠΎΠ³ΠΎ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ Π² ΡΠ°ΡΡΠ²ΠΎΡΠ΅ Π±ΠΎΠ»ΡΡΠ΅ ΡΠΎΠ³ΠΎ ΠΆΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ Ρ ΡΠ°ΡΡΠ²ΠΎΡΠΈΡΠ΅Π»Ρ. ΠΡΡΠΊΠ°Π·Π°Π½ΠΎ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, ΡΡΠΎ ΡΠ°ΡΡΠ²ΠΎΡΠ΅Π½Π½ΡΠ΅ ΡΠ²Π΅ΡΠ΄ΠΎΠ΅, ΠΆΠΈΠ΄ΠΊΠΎΠ΅ ΠΈΠ»ΠΈ Π³Π°Π·ΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎΠ΅ Π²Π΅ΡΠ΅ΡΡΠ²Π° ΠΎΡΠ»Π°Π±Π»ΡΡΡ ΠΌΠ΅ΠΆΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΠ΅ ΡΠ²ΡΠ·ΠΈ ΡΠ°ΡΡΠ²ΠΎΡΠΈΡΠ΅Π»Ρ ΠΈ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°ΡΡ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Π΅Π³ΠΎ Π½Π°ΡΡΡΠ΅Π½Π½ΡΡ
ΠΏΠ°ΡΠΎΠ².ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΡ
ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π° ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π³ΠΎ ΡΠ°Π·ΡΠ΅ΠΆΠ΅Π½ΠΈΡ Π² ΡΠ°ΡΡΠ²ΠΎΡΠΈΡΠ΅Π»ΡΡ
ΠΈ Π² ΡΠ°ΡΡΠ²ΠΎΡΠ°Ρ
Π³Π»ΠΈΡΠ΅ΡΠΈΠ½Π°. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, Π΄Π°Π½Π° ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½Π°Ρ ΠΎΡΠ΅Π½ΠΊΠ° ΠΊΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π½ΡΡ
ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ΅ΠΉ.Β Β
ΠΠ°ΡΡΠΆΠ½ΡΠΉ ΡΠΈΠ»ΠΈΠ½Π΄ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π½Π°ΡΠ°Π΄ΠΎΠΊ Ρ ΡΠΏΡΠ°Π²Π»ΡΠ΅ΠΌΡΠΌ Π²Π°ΠΊΡΡΠΌΠΎΠΌ
There is a developed design of the external cylindrical nozzle with a vacuum camera. The paper studies the nozzle controllability of flow rate via regulated connection of the evacuated chamber to the atmosphere through an air throttle. Working capacity of the nozzle with inlet round or triangular orifice are researched. The gap is provided in the nozzle design between the external wall of the inlet orifice and the end face of the straight case in the nozzle case. The presented mathematical model of the nozzle with the evacuated chamber allows us to estimate the expected vacuum amount in the compressed section of a stream and maximum permissible absolute pressure at the inlet orifice. The paper gives experimental characteristics of the fluid flow process through the nozzle for different values of internal diameter of a straight case and an extent of its end face remoteness from an external wall of the inlet orifice. It estimates how geometry of nozzle constructive elements influences on the volume flow rate. It is established that the nozzle capacity significantly depends on the shape of inlet orifice. Triangular orifice nozzles steadily work in the mode of completely filled flow area of the straight case at much more amounts of the limit pressure of the flow. Vacuum depth in the evacuated chamber also depends on the shape of inlet orifice: the greatest vacuum is reached in a nozzle with the triangular orifice which 1.5 times exceeds the greatest vacuum with the round orifice. Possibility to control nozzle capacity through the regulated connection of the evacuated chamber to the atmosphere was experimentally estimated, thus depth of flow rate regulation of the nozzle with a triangular orifice was 45% in comparison with 10% regulation depth of the nozzle with a round orifice. Depth of regulation calculated by a mathematical model appeared to be much more. The paper presents experimental dependences of the flow coefficients of nozzle input orifice on the vacuum depth in the chamber. Research findings allowed us to express opinion that accepted in the works on "Fluid Mechanics " equality of pressure values in the center of cross-stream gravity and in its surrounding steam-gas medium is incorrect. The paper shows a possibility to create the nozzle design with updated device to connect a chamber to the atmosphere by the air throttle, which is flow pressure-controlled thus providing the nozzle operation as the flow rate stabilizer. The publication supplements information on nozzles provided in literature on " Fluid Mechanics". TheΒ developed design of the external cylindrical nozzle with controlled vacuum and of research results of its working capacity can be taken into consideration in designing hydraulic systems and devices of hydro-automatic equipment.Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π° ΠΈ Π°ΠΏΡΠΎΠ±ΠΈΡΠΎΠ²Π°Π½Π° ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΡ Π½Π°ΡΡΠΆΠ½ΠΎΠ³ΠΎ ΡΠΈΠ»ΠΈΠ½Π΄ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π½Π°ΡΠ°Π΄ΠΊΠ° Ρ Π²Π°ΠΊΡΡΠΌΠ½ΠΎΠΉ ΠΊΠ°ΠΌΠ΅ΡΠΎΠΉ. ΠΠ°ΠΊΡΡΠΌΠ½Π°Ρ ΠΊΠ°ΠΌΠ΅ΡΠ° ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π° Π·Π° ΡΡΡΡ ΡΠ΄Π°Π»Π΅Π½ΠΈΡ ΡΠΎΡΡΠ° Π³ΠΈΠ»ΡΠ·Ρ Π½Π°ΡΠ°Π΄ΠΊΠ° Π½Π° Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ ΡΡΠ΅Π½ΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΎ ΠΎΡΠ²Π΅ΡΡΡΠΈΠ΅ Ρ ΠΎΡΡΡΠΎΠΉ ΠΊΡΠΎΠΌΠΊΠΎΠΉ. ΠΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ Π½Π°ΡΠ°Π΄ΠΊΠΎΠ² Ρ Π²Ρ
ΠΎΠ΄Π½ΡΠΌ ΠΎΡΠ²Π΅ΡΡΡΠΈΠ΅ΠΌ ΠΊΡΡΠ³Π»ΠΎΠΉ ΠΈ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡ ΠΈ Π΄Π°Π½Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈΡ
ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² ΠΎΠ±ΡΡΠΌΠ½ΠΎΠ³ΠΎ ΡΠ°ΡΡ
ΠΎΠ΄Π°. ΠΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΠ΅ΠΌΠΎΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π²Π°ΠΊΡΡΠΌΠ° Π² ΠΊΠ°ΠΌΠ΅ΡΠ΅ ΠΏΡΡΡΠΌ Π΅Ρ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΊ Π°ΡΠΌΠΎΡΡΠ΅ΡΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠΏΡΠ°Π²Π»ΡΡΡ ΠΏΡΠΎΠΏΡΡΠΊΠ½ΠΎΠΉ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡΡ Π½Π°ΡΠ°Π΄ΠΊΠ°. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΎΠΏΡΡΠΊΠ½Π°Ρ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΎΡΠ²Π΅ΡΡΡΠΈΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡ ΠΏΡΠ΅Π²ΡΡΠ°Π΅Ρ ΠΏΡΠΎΠΏΡΡΠΊΠ½ΡΡ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΎΡΠ²Π΅ΡΡΡΠΈΡ ΠΊΡΡΠ³Π»ΠΎΠΉ ΡΠΎΡΠΌΡ ΠΏΡΠΈ ΡΠ°Π²Π½ΡΡ
ΠΏΠ»ΠΎΡΠ°Π΄ΡΡ
ΠΈΡ
ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΠ°ΡΠ°Π΄ΠΎΠΊ Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΡΠΌ Π²Ρ
ΠΎΠ΄Π½ΡΠΌ ΠΎΡΠ²Π΅ΡΡΡΠΈΠ΅ΠΌ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎ ΡΠ°Π±ΠΎΡΠ°Π΅Ρ ΠΏΡΠΈ Π²ΡΡΠΎΠΊΠΈΡ
Π½Π°ΠΏΠΎΡΠ°Ρ
ΠΈΡΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠΎΠ²Π΅ΡΠΊΠ° Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΠΎΡΡΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π°ΡΠ°Π΄ΠΊΠ° ΠΏΠΎΠΊΠ°Π·Π°Π»Π°, ΡΡΠΎ ΠΏΠΎΡΡΡΠ»ΠΈΡΡΠ΅ΠΌΠΎΠ΅ Π² ΡΠ°Π±ΠΎΡΠ°Ρ
ΠΏΠΎ ΠΌΠ΅Ρ
Π°Π½ΠΈΠΊΠ΅ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ ΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²ΠΎ Π³ΠΈΠ΄ΡΠΎΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π½Π°ΠΏΠΎΡΠ° Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΡΡΡΡΠΈ Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΡΡΠ΅ΠΊΡΠ½ΡΠΌ. ΠΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ Π²Π°ΠΊΡΡΠΌΠ½ΠΎΠΉ ΠΊΠ°ΠΌΠ΅ΡΡ Π½Π°ΡΠ°Π΄ΠΊΠ° ΠΊ Π°ΡΠΌΠΎΡΡΠ΅ΡΠ΅ ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²ΠΎΠΌ ΡΠ΅Π³ΡΠ»ΠΈΡΡΠ΅ΠΌΠΎΠ³ΠΎ Π΄ΡΠΎΡΡΠ΅Π»Ρ, ΡΠΏΡΠ°Π²Π»ΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΏΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ ΠΈΡΡΠ΅ΡΠ΅Π½ΠΈΡ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΡΡ ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·Π°ΡΠΈΡ ΡΠ°ΡΡ
ΠΎΠ΄Π° ΡΠ΅ΡΠ΅Π· Π½Π°ΡΠ°Π΄ΠΎΠΊ ΠΏΡΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡΡ
Π΄Π°Π²Π»Π΅Π½ΠΈΡ ΠΏΠΈΡΠ°ΡΡΠ΅ΠΉ ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ. ΠΠ»ΡΡΠ΅Π²ΡΠ΅ ΡΠ»ΠΎΠ²Π°: Π½Π°ΡΡΠΆΠ½ΡΠΉ ΡΠΈΠ»ΠΈΠ½Π΄ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π½Π°ΡΠ°Π΄ΠΎΠΊ Ρ Π²Π°ΠΊΡΡΠΌΠ½ΠΎΠΉ ΠΊΠ°ΠΌΠ΅ΡΠΎΠΉ, ΠΈΡΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ ΡΠ΅ΡΠ΅Π· ΠΎΡΠ²Π΅ΡΡΡΠΈΠ΅ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡ, ΠΏΡΠΎΠΏΡΡΠΊΠ½Π°Ρ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ Π½Π°ΡΠ°Π΄ΠΊΠ°, ΡΠ΅Π³ΡΠ»ΠΈΡΡΠ΅ΠΌΡΠΉ Π²Π°ΠΊΡΡΠΌ Π² ΠΊΠ°ΠΌΠ΅ΡΠ΅. DOI: 10.7463/aplts.0315.078301
- β¦