54 research outputs found

    The characterization of a vision-based navigation system for spacecraft proximity operations and on-orbit maintenance

    Get PDF
    Due to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to [email protected], referencing the URI of the item.Includes bibliographical references (leaf 16).To transport humans into space routinely and safely a spacecraft must be capable of proximity operations (maneuvers close to other spacecraft), and on-orbit maintenance. These operations require an intelligent system that identifies and informs neighboring spacecraft of their relative positions and orientations. VISNAV[[¹][²][³]] is a VISion-based sensing and NAVigation system that is able to determine the position and orientation of objects in 3-D space. The non-contact nature and quick update rate of this system make it an attractive option for spacecraft autonomous on-orbit maintenance, proximity operations, rendezvous and docking, and many other motion-tracking applications. The VISNAV system has been explored as an option for autonomous spacecraft rendezvous and docking applications. In these tests the VISNAV system loses some accuracy as the beacons move away from the bore sight of the sensor. Also, the system can become singular for certain vehicle and target light configurations. If the VISNAV system is to be used on real spacecraft it must be robust and failsafe, which means the model cannot become singular. The focus of this student project is to characterize the system accuracy as a function of distance and angle from bore sight of the sensor. The use of two sensors to create a "stereo" version of the VISNAV system will also be explored to increase the reliability and operating range of the system

    Risk-minimizing program execution in robotic domains

    Get PDF
    Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 153-161).In this thesis, we argue that autonomous robots operating in hostile and uncertain environments can improve robustness by computing and reasoning explicitly about risk. Autonomous robots with a keen sensitivity to risk can be trusted with critical missions, such as exploring deep space and assisting on the battlefield. We introduce a novel, risk-minimizing approach to program execution that utilizes program flexibility and estimation of risk in order to make runtime decisions that minimize the probability of program failure. Our risk-minimizing executive, called Murphy, utilizes two forms of program flexibility, 1) flexible scheduling of activity timing, and 2) redundant choice between subprocedures, in order to minimize two forms of program risk, 1) exceptions arising from activity failures, and 2) exceptions arising from timing constraint violations in a program. Murphy takes two inputs, a program written in a nondeterministic variant of the Reactive Model-based Programming Language (RMPL) and a set of stochastic activity failure models, one for each activity in a program, and computes two outputs, a risk-minimizing decision policy and value function. The decision policy informs Murphy which decisions to make at runtime in order to minimize risk, while the value function quantifies risk. In order to execute with low latency, Murphy computes the decision policy and value function offline, as a compilation step prior to program execution. In this thesis, we develop three approaches to RMPL program execution. First, we develop an approach that is guaranteed to minimize risk. For this approach, we reason probabilistically about risk by framing program execution as a Markov Decision Process (MDP). Next, we develop an approach that avoids risk altogether. For this approach, we frame program execution as a novel form of constraint-based temporal reasoning. Finally, we develop an execution approach that trades optimality in risk avoidance for tractability. For this approach, we leverage prior work in hierarchical decomposition of MDPs in order to mitigate complexity. We benchmark the tractability of each approach on a set of representative RMPL programs, and we demonstrate the applicability of the approach on a humanoid robot simulator.by Robert T. Effinger, IV.Sc.D

    Optimal temporal planning at reactive time scales via dynamic backtracking branch and bound

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2006.Includes bibliographical references (p. 110-115).Autonomous robots are being considered for increasingly capable roles in our society, such as urban search and rescue, automation for assisted living, and lunar habitat construction. To fulfill these roles, teams of autonomous robots will need to cooperate together to accomplish complex mission objectives in uncertain and dynamic environments. In these environments, autonomous robots face a host of new challenges, such as responding robustly to timing uncertainties and perturbations, task and coordination failures, and equipment malfunctions. In order to address these challenges, this thesis advocates a novel planning approach, called temporally-flexible contingent planning. A temporally-flexible contingent plan is a compact encoding of methods for achieving the mission objectives which incorporates robustness through flexible task durations, redundant methods, constraints on when methods are applicable, and preferences between methods. This approach enables robots to adapt to unexpected changes on-the-fly by selecting alternative methods at runtime in order to satisfy as best possible the mission objectives. The drawback to this approach, however, is the computational overhead involved in selecting alternative methods at runtime in response to changes.(cont.) If a robot takes too long to select a new plan, it could fail to achieve its near-term mission objectives and potentially incur damage. To alleviate this problem, and extend the range of applicability of temporally-flexible contingent planning to more demanding real-time systems, this thesis proposes a temporally-flexible contingent plan executive that selects new methods quickly and optimally in response to changes in a robot's health and environment. We enable fast and optimal method selection through two complimentary approaches. First, we frame optimal method selection as a constraint satisfaction problem (CSP) variant, called an Optimal Conditional CSP (OCCSP). Second, we extend fast CSP search algorithms, such as Dynamic Backtracking and Branch-and-Bound Search, to solve OCCSPs. Experiments on an autonomous rover test-bed and on randomly generated plans show that these contributions significantly improve the speed at which robots perform optimal method selection in response to changes in their health status and environment.by Robert T. Effinger, IV.S.M

    Dynamic Controllability of Temporally-flexible Reactive Programs

    Get PDF
    In this paper we extend dynamic controllability of temporally-flexible plans to temporally-flexible reactive programs. We consider three reactive programming language constructs whose behavior depends on runtime observations; conditional execution, iteration, and exception handling. Temporally-flexible reactive programs are distinguished from temporally-flexible plans in that program execution is conditioned on the runtime state of the world. In addition, exceptions are thrown and caught at runtime in response to violated timing constraints, and handled exceptions are considered successful program executions. Dynamic controllability corresponds to a guarantee that a program will execute to completion, despite runtime constraint violations and uncertainty in runtime state. An algorithm is developed which frames the dynamic controllability problem as an AND/OR search tree over possible program executions. A key advantage of this approach is the ability to enumerate only a subset of possible program executions that guarantees dynamic controllability, framed as an AND/OR solution subtree

    The Development of Stacked Core for the Fabrication of Deep Lightweight UV-Quality Space Mirrors

    Get PDF
    The 2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make 4m class or larger monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept 0.43m mirror was completed at Exelis optically tested at 250K at MSFC which demonstrated the ability for imaging out to 2.5 microns. The parameters and test results of this concept mirror are shown. The next phase of the program includes a 1.5m subscale mirror that will be optically and dynamically tested. The scale-up process will be discussed and the technology development path to a 4m mirror system by 2018 will be outlined

    Software-Enabled Smallsat Autonomy: Discussion with Examples

    Get PDF
    Smallsat missions using cooperating constellations offer significant benefits compared to traditional space missions. These benefits include lower unit costs, better robustness to failures, and the ability to collect data in a distributed fashion. Significant commercial smallsat missions are active in low Earth orbit, and spacecraft operators have expressed interest in smallsat constellations operating both at higher altitudes and in proximity operations missions. Autonomy plays a significant role in extending smallsat missions to these more challenging domains. Autonomy in a broad sense refers to a spacecraft\u27s or constellation\u27s ability to operate independently of ground systems, and affects every part of a typical mission. For example, onboard processing of data can significantly reduce the frequency and expense of communications to a terrestrial ground station link. Onboard safety and health management is critical in proximity operations with fast dynamics, or in remote operations where offboard monitoring is available infrequently. Onboard monitoring of mission objectives enables remote operations and reduces the required operator workload. Emergent Space Technologies has developed flight software products to enable future missions with greater autonomy. Navigator is a standalone application for cooperative absolute and relative navigation within a cluster of space vehicles. The Autopilot software suite enables routine orbit maintenance and satellite maneuvers to be monitored and executed onboard, increasing safety and reducing reliance on ground systems. Guardian is a suite of applications thatenable fault detection, isolation, and recovery on modules within a distributed mission. The Cirrus cloud computing framework enables distributed computing tasks within a fleet of cooperating platforms, allowing complex data processing algorithms to be executed onboard and distributed among vehicles according to their computational availability. Finally, Commander is a set of applications for autonomous execution of a planned mission on a distributed group of platforms. Critically, Commander enables autonomous coordination of the actions of Navigator, Autopilot, Guardian, and Cirrus, providing a significantly greater level of autonomy than the suites provide individually. In this paper, we describe the capabilities of the flight software and demonstrate how coordination using Commander enables desired operator missions. The following missions are considered: (1) autonomous lunar injection; (2) rendezvous and proximity operations; (3) constellation intelligence, surveillance, and reconnaissance. Discussion is informed by use case diagrams and simulation results using Emergent\u27s Ascent simulation environment

    Status of the Advanced Mirror Technology Development (AMTD) Phase 2, 1.5m ULE(Registered Trademark) Mirror

    Get PDF
    The Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make up to 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. Under a Phase I program, a proof of concept mirror was completed at Exelis and tested down to 250K at MSFC which would allow imaging out to 2.5 microns. In 2014, Exelis and NASA started a Phase II program to design and build a 1.5m mirror to demonstrate lateral scalability to a 4m monolithic primary mirror. The current status of the Phase II development program will be provided along with a Phase II program summary

    WFIRST coronagraph detector trap modeling results and improvements

    Get PDF
    The WFIRST coronagraph is being designed to detect and characterize mature exoplanets through the starlight reflected from their surfaces and atmospheres. The light incident on the detector from these distant exoplanets is estimated to be on the order of a few photons per pixel per hour. To measure such small signals, the project has baselined the CCD201 detector made by e2v, a low-noise and high-efficiency electron-multiplying charge-coupled device (EMCCD), and has instituted a rigorous test and modeling program to characterize the device prior to flight. An important consideration is detector performance degradation over the proposed mission lifetime due to radiation exposure in space. To quantify this estimated loss in performance, the project has built a detector trap model that takes into account detailed trap interactions at the sub-pixel level, including stochastic trap capture and release, and the deferment of charge into subsequent pixels during parallel and serial clocking of the pseudo-two-phase CCD201 device. This paper describes recent detector trap model improvements and modeling results

    Exo-C: a probe-scale space observatory for direct imaging and spectroscopy of extrasolar planetary systems

    Get PDF
    "Exo-C" is NASAs first community study of a modest aperture space telescope mission that is optimized for high contrast observations of exoplanetary systems. The mission will be capable of taking optical spectra of nearby exoplanets in reflected light, discovering previously undetected planets, and imaging structure in a large sample of circumstellar disks. It will obtain unique science results on planets down to super-Earth sizes and serve as a technology pathfinder toward an eventual flagship-class mission to find and characterize habitable Earth-like exoplanets. We present the mission/payload design and highlight steps to reduce mission cost/risk relative to previous mission concepts. Key elements are an unobscured telescope aperture, an internal coronagraph with deformable mirrors for precise wavefront control, and an orbit and observatory design chosen for high thermal stability. Exo-C has a similar telescope aperture, orbit, lifetime, and spacecraft bus requirements to the highly successful Kepler mission (which is our cost reference). Much of the needed technology development is being pursued under the WFIRST coronagraph study and would support a mission start in 2017, should NASA decide to proceed. This paper summarizes the study final report completed in March 2015.United States. National Aeronautics and Space Administration. Astrophysics Divisio

    Exo-C: a probe-scale space observatory for direct imaging and spectroscopy of extrasolar planetary systems

    Get PDF
    "Exo-C" is NASAs first community study of a modest aperture space telescope mission that is optimized for high contrast observations of exoplanetary systems. The mission will be capable of taking optical spectra of nearby exoplanets in reflected light, discovering previously undetected planets, and imaging structure in a large sample of circumstellar disks. It will obtain unique science results on planets down to super-Earth sizes and serve as a technology pathfinder toward an eventual flagship-class mission to find and characterize habitable Earth-like exoplanets. We present the mission/payload design and highlight steps to reduce mission cost/risk relative to previous mission concepts. Key elements are an unobscured telescope aperture, an internal coronagraph with deformable mirrors for precise wavefront control, and an orbit and observatory design chosen for high thermal stability. Exo-C has a similar telescope aperture, orbit, lifetime, and spacecraft bus requirements to the highly successful Kepler mission (which is our cost reference). Much of the needed technology development is being pursued under the WFIRST coronagraph study and would support a mission start in 2017, should NASA decide to proceed. This paper summarizes the study final report completed in March 2015
    corecore