120 research outputs found

    Phase resolved X-ray spectroscopy of HDE228766: Probing the wind of an extreme Of+/WNLha star

    Full text link
    HDE228766 is a very massive binary system hosting a secondary component, which is probably in an intermediate evolutionary stage between an Of supergiant and an WN star. The wind of this star collides with the wind of its O8 II companion, leading to relatively strong X-ray emission. Measuring the orbital variations of the line-of-sight absorption toward the X-ray emission from the wind-wind interaction zone yields information on the wind densities of both stars. X-ray spectra have been collected at three key orbital phases to probe the winds of both stars. Optical photometry has been gathered to set constraints on the orbital inclination of the system. The X-ray spectra reveal prominent variations of the intervening column density toward the X-ray emission zone, which are in line with the expectations for a wind-wind collision. We use a toy model to set constraints on the stellar wind parameters by attempting to reproduce the observed variations of the relative fluxes and wind optical depths at 1 keV. The lack of strong optical eclipses sets an upper limit of about 68 degrees on the orbital inclination. The analysis of the variations of the X-ray spectra suggests an inclination in the range 54 - 61 degrees and indicates that the secondary wind momentum ratio exceeds that of the primary by at least a factor 5. Our models further suggest that the bulk of the X-ray emission arises from the innermost region of the wind interaction zone, which is from a region whose outer radius, as measured from the secondary star, lies between 0.5 and 1.5 times the orbital separation

    A spectroscopic investigation of the O-type star population in four Cygnus OB associations. II. Determination of the fundamental parameters

    Full text link
    Aims. Having established the binary status of nineteen O-type stars located in four Cygnus OB associations, we now determine their fundamental parameters to constrain their properties and their evolutionary status. We also investigate their surface nitrogen abundances, which we compare with other results from the literature obtained for galactic O-type stars. Methods. Using optical spectra collected for each object in our sample and some UV data from the archives, we apply the CMFGEN atmosphere code to determine their main properties. For the binary systems, we have disentangled the components to obtain their individual spectra and investigate them as if they were single stars. Results. We find that the distances of several presumably single O-type stars seem poorly constrained because their luminosities are not in agreement with the "standard" luminosities of stars with similar spectral types. The ages of these O-type stars are all less than 7 Myrs. Therefore, the ages of these stars agree with those, quoted in the literature, of the four associations, except for CygOB8 for which the stars seem older than the association itself. However, we point out that the distance of certain stars is debatable relative to values found in the literature. The N content of these stars put in perspective with N contents of several other galactic O-type stars seems to draw the same five groups as found in the "Hunter" diagram for the O and B-type stars in the LMC even though their locations are obviously different. We determine mass-loss rates for several objects from the Halpha line and UV spectra. Finally, we confirm the "mass discrepancy" especially for O stars with masses smaller than 30 Msun. .Comment: 11 pages, and 26 pages of Appendix. A&A in pres

    A modern study of HD166734: a massive supergiant system

    Full text link
    Aims. HD166734 is an eccentric eclipsing binary system composed of two supergiant O-type stars, orbiting with a 34.5-day period. In this rare configuration for such stars, the two objects mainly evolve independently, following single-star evolution so far. This system provides a chance to study the individual parameters of two supergiant massive stars and to derive their real masses. Methods. An intensive monitoring was dedicated to HD166734.We analyzed mid- and high-resolution optical spectra to constrain the orbital parameters of this system. We also studied its light curve for the first time, obtained in the VRI filters. Finally, we disentangled the spectra of the two stars and modeled them with the CMFGEN atmosphere code in order to determine the individual physical parameters. Results. HD166734 is a O7.5If+O9I(f) binary. We confirm its orbital period but we revise the other orbital parameters. In comparison to what we found in the literature, the system is more eccentric and, now, the hottest and the most luminous component is also the most massive one. The light curve exhibits only one eclipse and its analysis indicates an inclination of 63.0{\deg} ±\pm 2.7{\deg}. The photometric analysis provides us with a good estimation of the luminosities of the stars, and therefore their exact positions in the Hertzsprung-Russell diagram. The evolutionary and the spectroscopic masses show good agreement with the dynamical masses of 39.5 Msun for the primary and 33.5 Msun for the secondary, within the uncertainties. The two components are both enriched in helium and in nitrogen and depleted in carbon. In addition, the primary also shows a depletion in oxygen. Their surface abundances are however not different from those derived from single supergiant stars, yielding, for both components, an evolution similar to that of single stars.Comment: 13 pages, 13 figures, A&A accepte

    The Massive Binary System 9 Sgr Revisited: New Insights into Disentangling Methods

    Full text link
    Disentangling techniques are often needed to obtain the spectra of the individual components of binary or multiple systems. A thorough analysis of the shift-and-add algorithm of Marchenko, Moffat, & Eenens (1998) reveals that in many cases the line fluxes are poorly reproduced and spurious wings appear. The causes of these discrepancies are discussed and a new disentangling package, QER20, is presented which significantly reduces these errors and vastly increases the performance. When applied to the massive binary 9 Sgr, our new code yields line fluxes which are notably different from those previously published and lead us to revise the spectral classification to slightly earlier subtypes: O3V((f +)) for the primary and O5V((f)) for the secondary. We show that with the MME98 algorithm the classification of massive stars in binaries can be off by several subtypes whilst there are no such errors when the QER20 package is used.Comment: Accepted for publication in Astronomical Notes, 12 pages, 10 figure

    A new investigation of the binary HD 48099

    Full text link
    With an orbital period of about 3.078 days, the double-lined spectroscopic binary HD 48099 is, still now, the only short-period O+O system known in the Mon OB2 association. Even though an orbital solution has already been derived for this system, few information are available about the individual stars. We present, in this paper, the results of a long-term spectroscopic campaign. We derive a new orbital solution and apply a disentangling method to recover the mean spectrum of each star. To improve our knowledge concerning both components, we determine their spectral classifications and their projected rotational velocities. We also constrain the main stellar parameters of both stars by using the CMFGEN atmosphere code and provide the wind properties for the primary star through the study of IUE spectra. This investigation reveals that HD 48099 is an O5.5 V((f))+O9 V binary with M_1 sin^3 i = 0.70 M_{\sun} and M_2 sin^3 i = 0.39 M_{\sun}, implying a rather low orbital inclination. This result, combined with both a large effective temperature and log g, suggests that the primary star (v sini ~ 91 km s^-1) is actually a fast rotator with a strongly clumped wind and a nitrogen abundance of about 8 times the solar value.Comment: 12 pages, 7 figures, accepted by Ap

    New insight into the massive eccentric binary HD 165052: self-consistent orbital solution, apsidal motion, and fundamental parameters

    Full text link
    HD165052 is a short-period massive eccentric binary system that undergoes apsidal motion. As the rate of apsidal motion is directly related to the internal structure constants of the binary components, its study allows to get insight into the internal structure of the stars. We use medium- and high-resolution spectroscopic observations of HD165052 to provide constraints on the fundamental properties of the binary system and the evolutionary state of its components. We apply a spectral disentangling code to reconstruct artefact-free spectra of the individual stars and derive the radial velocities (RVs) at the times of the observations. We perform the first analysis of the disentangled spectra with the non-LTE model atmosphere code CMFGEN to determine the stellar properties. We derive the first self-consistent orbital solution of all existing RV data, including those reported in the literature, accounting for apsidal motion. We build, for the very first time, dedicated stellar evolution tracks with the Cl\'es code requesting the theoretical effective temperatures and luminosities to match those obtained from our spectroscopic analysis. The binary system HD165052, consisting of an O6.5V((f)) primary and an O7V((f)) secondary, displays apsidal motion at a rate of (11.30+0.64-0.49)deg\degyr1^{-1}. Evolutionary masses are compared to minimum dynamical masses to constrain the orbital inclination. Evolutionary masses Mev,P=24.8±\pm1.0M_\odot and Mev,S=20.9±\pm1.0M_\odot and radii Rev,P=7.0+0.5-0.4R_\odot and Rev,S=6.2+0.4-0.3R_\odot are derived, and the inclination is constrained to 22.1degi23.3deg\deg\le i\le 23.3\deg. Theoretical apsidal motion rates, derived assuming an age of 2.0+/-0.5 Myr for the binary, are in agreement with the observational determination. The agreement with theoretical apsidal motion rates enforces the inferred values of the evolutionary stellar masses and radii.Comment: 17 pages. arXiv admin note: text overlap with arXiv:2205.1120

    Near IR Spectroscopic monitoring of WR 140 during the 2001 periastron passage

    Full text link
    We present new spectra of WR 140 (HD 193793) in the JHK bands with some covering the 1.083-micron He I emission line at higher resolution, observed between 2000 October and 2003 May to cover its 2001 periastron passage. The WC7 + O4-5 spectroscopic binary WR 140 is the prototype of colliding-wind, episodic dust-making Wolf-Rayet systems which also show strong variations in radio and X-ray emission. The JHK spectra showed changes in continuum and in the equivalent widths of the WC emission lines, consistent with formation of dust starting between 2001 January 3 and March 26 (orbital phases 0.989 and 0.017) and its subsequent fading and cooling. The 1.083-micron He I line has a P-Cygni profile which showed variations in both absorption and emission components as WR 140 went through periastron passage. The variation of the absorption component yielded tight constraints on the geometry of the wind-collision region, giving theta = 50 +/- 8 degrees for the opening semi-angle of the interaction `cone', indicating a wind-momentum ratio of the O to the WR star=0.1, about three times larger than previously believed. As the system approached periastron, the emission component showed the appearance of a significant sub-peak, movement of which across the profile was seen to be consistent with its formation in wind material flowing along the contact discontinuity between the two stellar winds and the changing orientation of the colliding wind region. The flux carried in the sub-peak exceeded the X-ray fluxes measured at previous periastron passages. This additional source of radiative cooling of the shock-heated gas probably causes it to depart from being adiabatic around periastron passage, thereby accounting for the departure of the X-ray flux from its previously expected 1/d1/d-dependency.Comment: Accepted for publication in MNRAS - 13 Pages, 10 figure

    The Stellar Content of Obscured Galactic Giant H II Regions

    Get PDF
    Near infrared images of the Galactic giant HII region W43 reveal a dense stellar cluster at its center. Broad band JHK photometry of the young cluster and K-band spectra of three of its bright stars are presented. The 2 micron spectrum of the brightest star in the cluster is very well matched to the spectra of Wolf-Rayet stars of sub-type WN7. Two other stars are identified as O type giants or supergiants by their NIII and CIV emission. The close spatial clustering of O and the hydrogen WN type stars is analogous to the intense star burst clusters R136 in the Large Magellanic Cloud and NGC3603 in the Galaxy.Comment: 22 pages (LaTex), including 7 figures (eps

    First orbital solution for the non-thermal emitter Cyg OB2 #9

    Full text link
    After the first detection of its binary nature, the spectroscopic monitoring of the non-thermal radio emitter Cyg OB2 #9 (P=2.4yrs) has continued, doubling the number of available spectra of the star. Since the discovery paper of 2008, a second periastron passage has occurred in February 2009. Using a variety of techniques, the radial velocities could be estimated and a first, preliminary orbital solution was derived from the HeI5876 line. The mass ratio appears close to unity and the eccentricity is large, 0.7--0.75. X-ray data from 2004 and 2007 are also analyzed in quest of peculiarities linked to binarity. The observations reveal no large overluminosity nor strong hardness, but it must be noted that the high-energy data were taken after the periastron passage, at a time where colliding wind emission may be low. Some unusual X-ray variability is however detected, with a 10% flux decrease between 2004 and 2007. To clarify their origin and find a more obvious signature of the wind-wind collision, additional data, taken at periastron and close to it, are needed.Comment: 15 pages, 4 figures, accepted by Ap

    A downward revision to the distance of the 1806-20 cluster and associated magnetar from Gemini near-Infrared spectroscopy

    Get PDF
    We present H- and K-band spectroscopy of OB and Wolf-Rayet (WR) members of the Milky Way cluster 1806-20 (G10.0-0.3), to obtain a revised cluster distance of relevance to the 2004 giant flare from the SGR 1806-20 magnetar. From GNIRS spectroscopy obtained with Gemini South, four candidate OB stars are confirmed as late O/early B supergiants, while we support previous mid WN and late WC classifications for two WR stars. Based upon an absolute Ks-band magnitude calibration for B supergiants and WR stars, and near-IR photometry from NIRI at Gemini North plus archival VLT/ISAAC datasets, we obtain a cluster distance modulus of 14.7+/-0.35 mag. The known stellar content of the 1806-20 cluster suggests an age of 3-5 Myr, from which theoretical isochrone fits infer a distance modulus of 14.7+/-0.7 mag. Together, our results favour a distance modulus of 14.7+/-0.4 mag (8.7^+1.8_-1.5 kpc) to the 1806-20 cluster, which is significantly lower than the nominal 15 kpc distance to the magnetar. For our preferred distance, the peak luminosity of the December 2004 giant flare is reduced by a factor of three to 7 X 10^46 erg/s, such that the contamination of BATSE short gamma ray bursts (GRB's) from giant flares of extragalactic magnetars is reduced to a few percent. We infer a magnetar progenitor mass of ~48^+20_-8 Msun, in close agreement with that obtained recently for the magnetar in Westerlund 1.Comment: 6 pages, 4 figures, accepted for MNRAS Letter
    corecore