16 research outputs found

    The Contribution of Endomycorrhiza to the Performance of Potato Virus Y-Infected Solanaceous Plants: Disease Alleviation or Exacerbation?

    Get PDF
    Solanaceae, comprising meaningful crops (as potato, tomato, pepper, eggplant, and tobacco), can benefit from a symbiosis with arbuscular mycorrhizal fungi (AMF), which improve plant fitness and support plant defense against pathogens. Currently, those crops are likely the most impacted by Potato virus Y (PVY). Unfortunately, the effects of AM symbiosis on the severity of disease induced by PVY in solanaceous crops remain uncertain, partly because the interplay between AMF and PVY is poorly characterized. To shed some light on this issue, available studies on interactions in tripartite association between the host plant, its fungal colonizer, and viral pathogen were analyzed and discussed. Although the best-documented PVY transmission pathway is aphid-dependent, PVY infections are also observed in the absence of insect vector. We hypothesize the existence of an additional pathway for virus transmission involving AMF, in which the common mycorrhizal network (CMN) may act as a potential bridge. Therefore, we reviewed (1) the significance of AM colonization for the course of disease, (2) the potential of AMF networks to act as vectors for PVY, and (3) the consequences for crop breeding and production of AM biofertilizers

    Microbiological Hazards Associated with Archaeological Works, Illustrated with an Example of Fredro Crypt (Przemyśl, Poland)

    Get PDF
    The human remains and other materials found in crypts can be highly contaminated with microorganisms. Archaeologists are exposed to microorganisms in many ways (e.g by inhaling dust, contaminating scratches or cuts). We aimed at evaluating microbial hazards associated with human remains and bioaerosols formed during archaeological works in burial crypts. The samples of the human remains, bioaerosols and personal protective equipment (dust respirators, disposable coveralls) were collected during archaeological works in the vault of the Cathedral Basilica of St. John the Baptist and the Assumption of the Blessed Virgin Mary in Przemyśl (Fredro crypt). The microbiological examination involved determining the number of spores of aerobic and anaerobic bacteria, the number of mesophilic and hemolytic bacteria, and the number of xerophilic, non- xerophilic and keratinolytic fungi. The air as well as objects and materials found in crypts are highly contaminated with bacteria and fungi. The xerophilic fungi were the most numerous in all samples of human remains 1–230·103 cfu(colony forming units/g). The non-xerophilic fungi were predominant in bioaerosols (>104 cfu/m3 during archaeological works). The majority of bacterial strains (81.3%) belonged to the genus Bacillus. Fungi belonging to the genera Penicillium (65.2%) and Aspergillus (28.6%) dominated among the isolated fungi. Fogging sterilization of the crypt turned out to be ineffective. The high number of microorganisms both in the air and on human remains indicates that there is a need for particular caution during archaeological works which cause dust emission. In order to reduce exposure to harmful biological factors, the use of disposable personal protective equipment seems necessary

    Microbiological Hazards Associated with Archaeological Works, Illustrated with an Example of Fredro Crypt (Przemyśl, Poland)

    Get PDF
    The human remains and other materials found in crypts can be highly contaminated with microorganisms. Archaeologists are exposed to microorganisms in many ways (e.g by inhaling dust, contaminating scratches or cuts). We aimed at evaluating microbial hazards associated with human remains and bioaerosols formed during archaeological works in burial crypts. The samples of the human remains, bioaerosols and personal protective equipment (dust respirators, disposable coveralls) were collected during archaeological works in the vault of the Cathedral Basilica of St. John the Baptist and the Assumption of the Blessed Virgin Mary in Przemyśl (Fredro crypt). The microbiological examination involved determining the number of spores of aerobic and anaerobic bacteria, the number of mesophilic and hemolytic bacteria, and the number of xerophilic, non- xerophilic and keratinolytic fungi. The air as well as objects and materials found in crypts are highly contaminated with bacteria and fungi. The xerophilic fungi were the most numerous in all samples of human remains 1–230·103 cfu(colony forming units/g). The non-xerophilic fungi were predominant in bioaerosols (>104 cfu/m3 during archaeological works). The majority of bacterial strains (81.3%) belonged to the genus Bacillus. Fungi belonging to the genera Penicillium (65.2%) and Aspergillus (28.6%) dominated among the isolated fungi. Fogging sterilization of the crypt turned out to be ineffective. The high number of microorganisms both in the air and on human remains indicates that there is a need for particular caution during archaeological works which cause dust emission. In order to reduce exposure to harmful biological factors, the use of disposable personal protective equipment seems necessary

    AMF species do matter: Rhizophagus irregularis and Funneliformis mosseae affect healthy and PVY-infected Solanum tuberosum L. in a different way

    Get PDF
    Arbuscular mycorrhizal fungi (AMF) were documented to positively influence plant growth and yield, which is extremely important for the production of many crops including potato. However, the nature of the interaction between arbuscular mycorrhiza and plant virus that share the same host is not well characterized. In this study, we examined the effect of different AMF, Rhizophagus irregularis and Funneliformis mosseae, on healthy and potato virus Y (PVY)-infected Solanum tuberosum L. The analyses conducted included the measurement of potato growth parameters, oxidative stress indicators, and photosynthetic capacity. Additionally, we evaluated both the development of AMF in plant roots and the virus level in mycorrhizal plants. We found that two AMF species colonized plant roots to varying degrees (ca. 38% for R. irregularis vs. 20% for F. mosseae). Rhizophagus irregularis had a more positive effect on potato growth parameters, causing a significant increase in the total fresh and dry weight of tubers, along with virus-challenged plants. Furthermore, this species lowered hydrogen peroxide levels in PVY-infected leaves and positively modulated the levels of nonenzymatic antioxidants, i.e., ascorbate and glutathione in leaves and roots. Finally, both fungal species contributed to reduced lipid peroxidation and alleviation of virus-induced oxidative damage in plant organs. We also confirmed an indirect interaction between AMF and PVY inhabiting the same host. The two AMF species seemed to have different abilities to colonize the roots of virus-infected hosts, as R. irregularis showed a stronger drop in mycorrhizal development in the presence of PVY. At the same time, arbuscular mycorrhiza exerted an effect on virus multiplication, causing increased PVY accumulation in plant leaves and a decreased concentration of virus in roots. In conclusion, the effect of AMF-plant interactions may differ depending on the genotypes of both symbiotic partners. Additionally, indirect AMF-PVY interactions occur in host plants, diminishing the establishment of arbuscular mycorrhiza while changing the distribution of viral particles in plants

    16S rDNA pyrosequencing analysis of bacterial community in heavy metals polluted soils

    Get PDF
    Soil contamination with heavy metals is a widespread problem, especially prominent on grounds lying in the vicinity of mines, smelters, and other industrial facilities. Many such areas are located in Southern Poland; they are polluted mainly with Pb, Zn, Cd, or Cu, and locally also with Cr. As for now, little is known about most bacterial species thriving in such soils and even less about a core bacterial community—a set of taxa common to polluted soils. Therefore, we wanted to answer the question if such a set could be found in samples differing physicochemically and phytosociologically. To answer the question, we analyzed bacterial communities in three soil samples contaminated with Pb and Zn and two contaminated with Cr and lower levels of Pb and Zn. The communities were assessed with 16S rRNA gene fragments pyrosequencing. It was found that the samples differed significantly and Zn decreased both diversity and species richness at species and family levels, while plant species richness did not correlate with bacterial diversity. In spite of the differences between the samples, they shared many operational taxonomic units (OTUs) and it was possible to delineate the core microbiome of our sample set. The core set of OTUs comprised members of such taxa as Sphingomonas, Candidatus Solibacter, or Flexibacter showing that particular genera might be shared among sites ~40 km distant

    Data_Sheet_1_AMF species do matter: Rhizophagus irregularis and Funneliformis mosseae affect healthy and PVY-infected Solanum tuberosum L. in a different way.pdf

    No full text
    Arbuscular mycorrhizal fungi (AMF) were documented to positively influence plant growth and yield, which is extremely important for the production of many crops including potato. However, the nature of the interaction between arbuscular mycorrhiza and plant virus that share the same host is not well characterized. In this study, we examined the effect of different AMF, Rhizophagus irregularis and Funneliformis mosseae, on healthy and potato virus Y (PVY)-infected Solanum tuberosum L. The analyses conducted included the measurement of potato growth parameters, oxidative stress indicators, and photosynthetic capacity. Additionally, we evaluated both the development of AMF in plant roots and the virus level in mycorrhizal plants. We found that two AMF species colonized plant roots to varying degrees (ca. 38% for R. irregularis vs. 20% for F. mosseae). Rhizophagus irregularis had a more positive effect on potato growth parameters, causing a significant increase in the total fresh and dry weight of tubers, along with virus-challenged plants. Furthermore, this species lowered hydrogen peroxide levels in PVY-infected leaves and positively modulated the levels of nonenzymatic antioxidants, i.e., ascorbate and glutathione in leaves and roots. Finally, both fungal species contributed to reduced lipid peroxidation and alleviation of virus-induced oxidative damage in plant organs. We also confirmed an indirect interaction between AMF and PVY inhabiting the same host. The two AMF species seemed to have different abilities to colonize the roots of virus-infected hosts, as R. irregularis showed a stronger drop in mycorrhizal development in the presence of PVY. At the same time, arbuscular mycorrhiza exerted an effect on virus multiplication, causing increased PVY accumulation in plant leaves and a decreased concentration of virus in roots. In conclusion, the effect of AMF-plant interactions may differ depending on the genotypes of both symbiotic partners. Additionally, indirect AMF-PVY interactions occur in host plants, diminishing the establishment of arbuscular mycorrhiza while changing the distribution of viral particles in plants.</p

    Microbial communities associated with the anthropogenic, highly alkaline environment of a saline soda lime, Poland

    Get PDF
    Soda lime is a by-product of the Solvay soda process for the production of sodium carbonate from limestone and sodium chloride. Due to a high salt concentration and alkaline pH, the lime is considered as a potential habitat of haloalkaliphilic and haloalkalitolerant microbial communities. This artificial and unique environment is nutrient-poor and devoid of vegetation, due in part to semi-arid, saline and alkaline conditions. Samples taken from the surface layer of the lime and from the depth of 2 m (both having pH similar to 11 and ECe up to 423 dS m(-1)) were investigated using culture-based (culturing on alkaline medium) and culture-independent microbiological approaches (microscopic analyses and pyrosequencing). A surprisingly diverse bacterial community was discovered in this highly saline, alkaline and nutrient-poor environment, with the bacterial phyla Proteobacteria (representing 52.8% of the total bacterial community) and Firmicutes (16.6%) showing dominance. Compared to the surface layer, higher bacterial abundance and diversity values were detected in the deep zone, where more stable environmental conditions may occur. The surface layer was dominated by members of the genera Phenylobacterium, Chelativorans and Skermanella, while in the interior layer the genus Fictibacillus was dominant. The culturable aerobic, haloalkaliphilic bacteria strains isolated in this study belonged mostly to the genus Bacillus and were closely related to the species Bacillus pseudofirmus, B. cereus, B. plakortidis, B. thuringensis and B. pumilus
    corecore