1,080 research outputs found

    Ecology and Evolution of Drosophila ambochila, A Rare Picture-Winged Species Endemic to the Wai'anae Range of O'ahu, Hawaiian Islands

    Get PDF
    The rare O'ahu picture-winged fly Drosophila ambochila Hardy & Kaneshiro is endemic to two windward ravines in the Wai'anae Mountains that harbor its host plant. Drosophila ambochila is an ecological specialist that breeds on Pisonia stems and trunks in an intermediate stage of decay. By providing field-collected females with suitable substrate material, we have been able to observe the oviposition behavior of this species in the laboratory and obtain F 1 larvae. In nature, females oviposit each batch of mature eggs ("'4050) in a single cluster, by repeatedly inserting their long ovipositor into the same crack or beetle hole in the decaying Pisonia bark. Ovipositor, ovary, and egg morphology are characteristic of bark-breeding Hawaiian Drosophila, but SEM studies revealed a distinctive chorionic ultrastructure for the eggs of this species. Larval salivary chromosome analyses indicated that the O'ahu D. ambochila is most closely related to D. alsophila from the island of Hawai'i and have helped to resolve the phylogenetic relationships among six of the nine species belonging to the vesciseta subgroup of the glabriapex species group

    Early-Holocene warming in Beringia and its mediation by sea-level and vegetation changes

    No full text
    Arctic land-cover changes induced by recent global climate change (e.g., expansion of woody vegetation into tundra and effects of permafrost degradation) are expected to generate further feedbacks to the climate system. Past changes can be used to assess our understanding of feedback mechanisms through a combination of process modelling and paleo-observations. The sub-continental region of Beringia (Northeast Siberia, Alaska, and northwestern Canada) was largely ice-free at the peak of deglacial warming and experienced both major vegetation change and loss of permafrost when many arctic regions were still ice covered. The evolution of Beringian climate at this time was largely driven by global features, such as the amplified seasonal cycle of Northern Hemisphere insolation and changes in global ice volume and atmospheric composition, but changes in regional land-surface controls, such as the widespread development of thaw lakes, the replacement of tundra by deciduous forest or woodland, and the flooding of the Bering–Chukchi land bridge, were probably also important. We examined the sensitivity of Beringia’s early Holocene climate to these regional-scale controls using a regional climate model (RegCM). Lateral and oceanic boundary conditions were provided by global climate simulations conducted using the GENESIS V2.01 atmospheric general circulation model (AGCM) with a mixed-layer ocean. We carried out two present day simulations of regional climate, one with modern and one with 11 ka geography, plus another simulation for 6 ka. In addition, we performed five ? 11 ka climate simulations, each driven by the same global AGCM boundary conditions: (i) 11 ka “Control”, which represents conditions just prior to the major transitions (exposed land bridge, no thaw lakes or wetlands, widespread tundra vegetation), (ii) sea-level rise, which employed present day continental outlines, (iii) vegetation change, with deciduous needleleaf and deciduous broadleaf boreal vegetation types distributed as suggested by the paleoecological record, (iv) thaw lakes, which used the present day distribution of lakes and wetlands; and (v) post-11 ka “All”, incorporating all boundary conditions changed in experiments (ii)–(iv). We find that regional-scale controls strongly mediate the climate responses to changes in the large-scale controls, amplifying them in some cases, damping them in others, and, overall, generating considerable spatial heterogeneity in the simulated climate changes. The change from tundra to deciduous woodland produces additional widespread warming in spring and early summer over that induced by the 11 ka insolation regime alone, and lakes and wetlands produce modest and localized cooling in summer and warming in winter. The greatest effect is the flooding of the land bridge and shelves, which produces generally cooler conditions in summer but warmer conditions in winter and is most clearly manifest on the flooded shelves and in eastern Beringia. By 6 ka continued amplification of the seasonal cycle of insolation and loss of the Laurentide ice sheet produce temperatures similar to or higher than those at 11 ka, plus a longer growing season

    Efficient Reverse Transcription Using Locked Nucleic Acid Nucleotides towards the Evolution of Nuclease Resistant RNA Aptamers

    Get PDF
    Background: Modified nucleotides are increasingly being utilized in the de novo selection of aptamers for enhancing their drug-like character and abolishing the need for time consuming trial-and-error based post-selection modifications. Locked nucleic acid (LNA) is one of the most prominent and successful nucleic acid analogues because of its remarkable properties, and widely explored as building blocks in therapeutic oligonucleotides. Evolution of LNA-modified RNA aptamers requires an efficient reverse transcription method for PCR enrichment of the selected RNA aptamer candidates. Establishing this key step is a pre-requisite for performing LNA-modified RNA aptamer selection

    Instantons and radial excitations in attractive Bose-Einstein condensates

    Get PDF
    Imaginary- and real-time versions of an equation for the condensate density are presented which describe dynamics and decay of any spherical Bose-Einstein condensate (BEC) within the mean field appraoch. We obtain quantized energies of collective finite amplitude radial oscillations and exact numerical instanton solutions which describe quantum tunneling from both the metastable and radially excited states of the BEC of 7Li atoms. The mass parameter for the radial motion is found different from the gaussian value assumed hitherto, but the effect of this difference on decay exponents is small. The collective breathing states form slightly compressed harmonic spectrum, n=4 state lying lower than the second Bogolyubov (small amplitude) mode. The decay of these states, if excited, may simulate a shorter than true lifetime of the metastable state. By scaling arguments, results extend to other attractive BEC-s.Comment: 6 pages, 3 figure

    Multigrid Monte Carlo Algorithms for SU(2) Lattice Gauge Theory: Two versus Four Dimensions

    Get PDF
    We study a multigrid method for nonabelian lattice gauge theory, the time slice blocking, in two and four dimensions. For SU(2) gauge fields in two dimensions, critical slowing down is almost completely eliminated by this method. This result is in accordance with theoretical arguments based on the analysis of the scale dependence of acceptance rates for nonlocal Metropolis updates. The generalization of the time slice blocking to SU(2) in four dimensions is investigated analytically and by numerical simulations. Compared to two dimensions, the local disorder in the four dimensional gauge field leads to kinematical problems.Comment: 24 pages, PostScript file (compressed and uuencoded), preprint MS-TPI-94-

    Reconstruction of the palaeo‐sea level of Britain and Ireland arising from empirical constraints of ice extent: implications for regional sea level forecasts and North American ice sheet volume

    Get PDF
    Reconstructions of palaeo-sea level are vital for predicting future sea level change and constraining palaeo-ice sheet reconstructions, as well as being useful for a wide array of applications across Quaternary Science. Previous reconstructions of the palaeo-sea level of Britain and Ireland relied on a circular tuning of glacio-isostatic models: input ice sheet thicknesses and extents were iteratively altered to fit relative sea level data. Here we break that circularity by utilizing new data from the BRITICE-CHRONO project, which constrains the position of the British–Irish ice sheet margin through time, and we compare derived glacio-isostatic modelling to the rich relative sea level record. We test a combination of plausible ice thickness scenarios which account for the uncertainty of ice margin position over the North Sea, demonstrating the region where regional sea level data could distinguish between different glaciation scenarios. Our optimal reconstruction is then combined with several global-scale reconstructions. As the signal of the British–Irish Ice Sheet is constrained, we demonstrate how the relative sea level record of Britain and Ireland can be used to test reconstructions of far-field ice sheets (e.g. Antarctica, Eurasia and the Laurentide). The derived palaeo-topography data are likely to be useful for multiple disciplines. Finally, our improved method of sea level reconstruction impacts predictions of contemporary vertical land motion

    Elementary excitations of trapped Bose gas in the large-gas-parameter regime

    Full text link
    We study the effect of going beyond the Gross-Pitaevskii theory on the frequencies of collective oscillations of a trapped Bose gas in the large gas parameter regime. We go beyond the Gross-Pitaevskii regime by including a higher-order term in the interatomic correlation energy. To calculate the frequencies we employ the sum-rule approach of many-body response theory coupled with a variational method for the determination of ground-state properties. We show that going beyond the Gross-Pitaevskii approximation introduces significant corrections to the collective frequencies of the compressional mode.Comment: 17 pages with 4 figures. To be published in Phys. Rev.

    Superconductivity in the two dimensional Hubbard Model.

    Full text link
    Quasiparticle bands of the two-dimensional Hubbard model are calculated using the Roth two-pole approximation to the one particle Green's function. Excellent agreement is obtained with recent Monte Carlo calculations, including an anomalous volume of the Fermi surface near half-filling, which can possibly be explained in terms of a breakdown of Fermi liquid theory. The calculated bands are very flat around the (pi,0) points of the Brillouin zone in agreement with photoemission measurements of cuprate superconductors. With doping there is a shift in spectral weight from the upper band to the lower band. The Roth method is extended to deal with superconductivity within a four-pole approximation allowing electron-hole mixing. It is shown that triplet p-wave pairing never occurs. Singlet d_{x^2-y^2}-wave pairing is strongly favoured and optimal doping occurs when the van Hove singularity, corresponding to the flat band part, lies at the Fermi level. Nearest neighbour antiferromagnetic correlations play an important role in flattening the bands near the Fermi level and in favouring superconductivity. However the mechanism for superconductivity is a local one, in contrast to spin fluctuation exchange models. For reasonable values of the hopping parameter the transition temperature T_c is in the range 10-100K. The optimum doping delta_c lies between 0.14 and 0.25, depending on the ratio U/t. The gap equation has a BCS-like form and (2*Delta_{max})/(kT_c) ~ 4.Comment: REVTeX, 35 pages, including 19 PostScript figures numbered 1a to 11. Uses epsf.sty (included). Everything in uuencoded gz-compressed .tar file, (self-unpacking, see header). Submitted to Phys. Rev. B (24-2-95

    Mechanisms for slow strengthening in granular materials

    Full text link
    Several mechanisms cause a granular material to strengthen over time at low applied stress. The strength is determined from the maximum frictional force F_max experienced by a shearing plate in contact with wet or dry granular material after the layer has been at rest for a waiting time \tau. The layer strength increases roughly logarithmically with \tau -only- if a shear stress is applied during the waiting time. The mechanisms of strengthening are investigated by sensitive displacement measurements and by imaging of particle motion in the shear zone. Granular matter can strengthen due to a slow shift in the particle arrangement under shear stress. Humidity also leads to strengthening, but is found not to be its sole cause. In addition to these time dependent effects, the static friction coefficient can also be increased by compaction of the granular material under some circumstances, and by cycling of the applied shear stress.Comment: 21 pages, 11 figures, submitted to Phys. Rev.
    • 

    corecore