23 research outputs found

    Variations in phototroph communities on the ablating bare-ice surface of glaciers on Brøggerhalvøya, Svalbard

    Get PDF
    During the summer ablation season, Arctic glacier surfaces host a wealth of microbial life. Here, the phototroph communities on the ablating bare-ice surface of three valley glaciers on Brøggerhalvøya, Svalbard were investigated. The communities mainly comprised seven taxa of green algae and cyanobacteria, which have been commonly reported on Arctic glaciers. Although the geographical and glaciological settings of the three studied glaciers are similar, there were differences in total phototroph biomass. The community structure was also distinctive among the glaciers: high dominance of a single taxon of green algae (Ancylonema nordenskiÜldii) for Midtre LovÊnbreen, abundant cyanobacteria for Austre Brøggerbreen, and diverse green algae for Pedersenbreen. The major soluble ions in the surface ice showed that there was no significant difference in meltwater nutrient conditions between the glaciers, but there were lower concentrations of mineral-derived ions on Midtre LovÊnbreen. Consequently, the glacier-specific mineral loading and surface hydrology are inferred to explain the contrast in bare ice algal communities between the glaciers. We hypothesize that local, glacier-specific conditions affect algal communities and the associated influences on carbon cycling and ice-surface albedo

    Can the bacterial community of a High Arctic glacier surface escape viral control?

    Get PDF
    Glacial ice surfaces represent a seasonally evolving three-dimensional photic zone which accumulates microbial biomass and potentiates positive feedbacks in ice melt. Since viruses are abundant in glacial systems and may exert controls on supraglacial bacterial production, we examined whether changes in resource availability would promote changes in the bacterial community and the dynamics between viruses and bacteria of meltwater from the photic zone of a Svalbard glacier. Our results indicated that, under ambient nutrient conditions, low estimated viral decay rates account for a strong viral control of bacterial productivity, incurring a potent viral shunt of a third of bacterial carbon in the supraglacial microbial loop. Moreover, it appears that virus particles are very stable in supraglacial meltwater, raising the prospect that viruses liberated in melt are viable downstream. However, manipulating resource availability as dissolved organic carbon, nitrogen, and phosphorous in experimental microcosms demonstrates that the photic zone bacterial communities can escape viral control. This is evidenced by a marked decline in virus-to-bacterium ratio (VBR) concomitant with increased bacterial productivity and number. Pyrosequencing shows a few bacterial taxa, principally Janthinobacterium sp., dominate both the source meltwater and microcosm communities. Combined, our results suggest that viruses maintain high VBR to promote contact with low-density hosts, by the manufacture of robust particles, but that this necessitates a trade-off which limits viral production. Consequently, dominant bacterial taxa appear to access resources to evade viral control. We propose that a delicate interplay of bacterial and viral strategies affects biogeochemical cycling upon glaciers and, ultimately, downstream ecosystems

    Microbial genomics amidst the Arctic crisis

    Get PDF
    The Arctic is warming – fast. Microbes in the Arctic play pivotal roles in feedbacks that magnify the impacts of Arctic change. Understanding the genome evolution, diversity and dynamics of Arctic microbes can provide insights relevant for both fundamental microbiology and interdisciplinary Arctic science. Within this synthesis, we highlight four key areas where genomic insights to the microbial dimensions of Arctic change are urgently required: the changing Arctic Ocean, greenhouse gas release from the thawing permafrost, 'biological darkening' of glacial surfaces, and human activities within the Arctic. Furthermore, we identify four principal challenges that provide opportunities for timely innovation in Arctic microbial genomics. These range from insufficient genomic data to develop unifying concepts or model organisms for Arctic microbiology to challenges in gaining authentic insights to the structure and function of low-biomass microbiota and integration of data on the causes and consequences of microbial feedbacks across scales. We contend that our insights to date on the genomics of Arctic microbes are limited in these key areas, and we identify priorities and new ways of working to help ensure microbial genomics is in the vanguard of the scientific response to the Arctic crisis

    A metagenomic snapshot of taxonomic and functional diversity in an Alpine glacier cryoconite ecosystem:Alpine cryoconite metagenome

    Get PDF
    Cryoconite is a microbe–mineral aggregate which darkens the ice surface of glaciers. Microbial process and marker gene PCR-dependent measurements reveal active and diverse cryoconite microbial communities on polar glaciers. Here, we provide the first report of a cryoconite metagenome and culture-independent study of alpine cryoconite microbial diversity. We assembled 1.2 Gbp of metagenomic DNA sequenced using an Illumina HiScanSQ from cryoconite holes across the ablation zone of Rotmoosferner in the Austrian Alps. The metagenome revealed a bacterially-dominated community, with Proteobacteria (62% of bacterial-assigned contigs) and Bacteroidetes (14%) considerably more abundant than Cyanobacteria (2.5%). Streptophyte DNA dominated the eukaryotic metagenome. Functional genes linked to N, Fe, S and P cycling illustrated an acquisitive trend and a nitrogen cycle based upon efficient ammonia recycling. A comparison of 32 metagenome datasets revealed a similarity in functional profiles between the cryoconite and metagenomes characterized from other cold microbe–mineral aggregates. Overall, the metagenomic snapshot reveals the cryoconite ecosystem of this alpine glacier as dependent on scavenging carbon and nutrients from allochthonous sources, in particular mosses transported by wind from ice-marginal habitats, consistent with net heterotrophy indicated by productivity measurements. A transition from singular snapshots of cryoconite metagenomes to comparative analyses is advocated

    Contrasts between the cryoconite and ice-marginal bacterial communities of Svalbard glaciers:Bacterial communities of Svalbard glaciers

    Get PDF
    Cryoconite holes are foci of unusually high microbial diversity and activity on glacier surfaces worldwide, comprising melt-holes formed by the darkening of ice by biogenic granular debris. Despite recent studies linking cryoconite microbial community structure to the functionality of cryoconite habitats, little is known of the processes shaping the cryoconite bacterial community. In particular, the assertions that the community is strongly influenced by aeolian transfer of biota from ice-marginal habitats and the potential for cryoconite microbes to inoculate proglacial habitats are poorly quantified despite their longevity in the literature. Therefore, the bacterial community structures of cryoconite holes on three High-Arctic glaciers were compared to bacterial communities in adjacent moraines and tundra using terminal-restriction fragment length polymorphism. Distinct community structures for cryoconite and ice-marginal communities were observed. Only a minority of phylotypes are present in both habitat types, implying that cryoconite habitats comprise distinctive niches for bacterial taxa when compared to ice-marginal habitats. Curiously, phylotype abundance distributions for both cryoconite and ice-marginal sites best fit models relating to succession. Our analyses demonstrate clearly that cryoconites have their own, distinct functional microbial communities despite significant inputs of cells from other habitats

    Subcritical CO2 adsorption on geomaterials of coal-bearing strata in the context of geological carbon sequestration

    Get PDF
    This paper explores the adsorption behaviour of geomaterials in the framework of CO2 sequestration in shallow level coal seams. Manometric adsorption experiments were carried out on two anthracite coal samples, two rock samples from East Irish Sea, MX80-bentonite, Speswhite kaolinite, dry, wet and biofilm-laden (Bascillus mojavensis-laden) sand at subcritical pressure range (up to 6.4 MPa) of isothermal condition at 298.15 K. The experiments were aimed to investigate the influence of the biogeological conditions of coal and caprock constitutions on CO2 adsorption. At lower pressures, the moisture had an influence on the CO2 adsorption on coal resulted in reduced adsorption capacity. At elevated pressures, the volume expulsion behaviour and coal-water interaction had an influence on the adsorption capacities of moist coal sample and resulted in comparable adsorption capacities to dry sample. The disparity in the adsorption capacities between the wet powdered and wet intact core samples showed that the results obtained with powder samples may not reflect the field conditions. Wet conditions and Bascillus mojavensis bacteria influenced the adsorption capacity of sand and showed CO2 chemisorption capacity. The desorption isotherm pattern of wet and biofilm sand showed that the CO2 was continuously adsorbed independent of the gas phase pressure. Among the clay minerals, bentonite had greater affinity towards CO2. Despite the fact that the adsorption capacity of the cap rock is smaller than that of the coal samples, the experimental investigation with constituents of the cap rock provides insights into the effect of biogeological conditions of coal and rock sample constituents on CO2 storage in coal seams

    Storage and export of microbial biomass across the western Greenland Ice Sheet

    Get PDF
    The Greenland Ice Sheet harbours a wealth of microbial life, yet the total biomass stored or exported from its surface to downstream environments is unconstrained. Here, we quantify microbial abundance and cellular biomass flux within the near-surface weathering crust photic zone of the western sector of the ice sheet. Using groundwater techniques, we demonstrate that interstitial water flow is slow (~10−2 m d−1), while flow cytometry enumeration reveals this pathway delivers 5 × 108 cells m−2 d−1 to supraglacial streams, equivalent to a carbon flux up to 250 g km−2 d−1. We infer that cellular carbon accumulation in the weathering crust exceeds fluvial export, promoting biomass sequestration, enhanced carbon cycling, and biological albedo reduction. We estimate that up to 37 kg km−2 of cellular carbon is flushed from the weathering crust environment of the western Greenland Ice Sheet each summer, providing an appreciable flux to support heterotrophs and methanogenesis at the bed

    Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard

    Get PDF
    The diversity of highly active bacterial communities in cryoconite holes on three Arctic glaciers in Svalbard was investigated using terminal restriction fragment length polymorphism (T-RFLP) of the 16S rRNA locus. Construction and sequencing of clone libraries allowed several members of these communities to be identified, with Proteobacteria being the dominant one, followed by Cyanobacteria and Bacteroidetes. T-RFLP data revealed significantly different communities in holes on the (cold) valley glacier Austre Brøggerbreen relative to two adjacent (polythermal) valley glaciers, Midtre Lovénbreen and Vestre Brøggerbreen. These population compositions correlate with differences in organic matter content, temperature and the metabolic activity of microbial communities concerned. No within-glacier spatial patterns were observed in the communities identified over the 2-year period and with the 1 km-spaced sampling. We infer that surface hydrology is an important factor in the development of cryoconite bacterial communities
    corecore