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Abstract
Cryoconite is a microbe–mineral aggregate which darkens the ice surface of glaciers. Microbial process and
marker gene PCR-dependent measurements reveal active and diverse cryoconite microbial communities on
polar glaciers. Here, we provide the first report of a cryoconite metagenome and culture-independent study of
alpine cryoconite microbial diversity. We assembled 1.2 Gbp of metagenomic DNA sequenced using an
Illumina HiScanSQ from cryoconite holes across the ablation zone of Rotmoosferner in the Austrian Alps.
The metagenome revealed a bacterially-dominated community, with Proteobacteria (62% of bacterial-
assigned contigs) and Bacteroidetes (14%) considerably more abundant than Cyanobacteria (2.5%).
Streptophyte DNA dominated the eukaryotic metagenome. Functional genes linked to N, Fe, S and P cycling
illustrated an acquisitive trend and a nitrogen cycle based upon efficient ammonia recycling. A comparison of
32 metagenome datasets revealed a similarity in functional profiles between the cryoconite and metagenomes
characterized from other cold microbe–mineral aggregates. Overall, the metagenomic snapshot reveals the
cryoconite ecosystem of this alpine glacier as dependent on scavenging carbon and nutrients from
allochthonous sources, in particular mosses transported by wind from ice-marginal habitats, consistent with
net heterotrophy indicated by productivity measurements. A transition from singular snapshots of cryoconite
metagenomes to comparative analyses is advocated.

Keywords: cryoconite, alpine glacier, metagenomics, Illumina

S Online supplementary data available from stacks.iop.org/ERL/8/035003/mmedia

1. Introduction

Cryoconite holes are thought to represent ‘ice-cold hot-spots
of microbial diversity and activity’ (Edwards et al 2012) at the

Content from this work may be used under the terms of
the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

surface of Earth’s largest freshwater biome, namely glaciers
and ice-sheets (Hodson et al 2008, Shiklomanov 1993).

Consequently, these melt-water filled depressions
which form by localized reduction of albedo by dark
microbe–mineral aggregates known as cryoconite (Takeuchi
2002, Takeuchi et al 2001, Wharton et al 1985) have garnered
growing interest. Investigations of microbial processes
associated with cryoconite have ascribed global significance
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to the rates of supraglacial carbon cycling measured (Anesio
et al 2009), and analysis of bacterial carbon fluxes reveals net
accumulation of carbon by cryoconite (Anesio et al 2010).
Furthermore, the reduction of albedo by cryoconite (Takeuchi
2002, Takeuchi et al 2001) along with other supraglacial
microbial consortia (Yallop et al 2012) may contribute to
the ‘biological darkening’ (Irvine-Fynn et al 2012) of glacier
surfaces.

Therefore, better insight into the molecular foundations
of cryoconite ecosystem functionality is sought. Building
from a clone library from Antarctic cryoconite (Christner
et al 2003), investigators have employed PCR-dependent
methods to characterize cryoconite diversity. T-RFLP reveals
distinct community structures for bacteria and fungi between
neighbouring High Arctic glaciers and ice-marginal habitats
(Edwards et al 2011, 2012, 2013), and between Arctic and
Antarctic glaciers (Cameron et al 2012b), while clone libraries
reveal communities dominated by either Proteobacteria,
Cyanobacteria or both phyla (Cameron et al 2012b, Edwards
et al 2011). Functional gene PCR detects nif H genes
(Telling et al 2012) consistent with nitrogen fixation (Telling
et al 2011, 2012), and other genes associated with carbon
and nitrogen cycling (Cameron et al 2012a). Although
the bacterial community structure of cryoconite is closely
correlated with rates of primary production and respiration
(Edwards et al 2011), further insights into community
structure-function relationships are limited.

Moreover, previous studies focus on the cryoconite
ecology of polar glaciers and ice-sheets. Less is known
about the microbial diversity of cryoconite on alpine
glaciers. Although the relative accessibility, vulnerability
and economic importance (Kaltenborn et al 2010) of alpine
glaciers provide an impetus for their study, particularly as
cryoconite may accelerate the melting of alpine glaciers
(Oerlemans et al 2009), culture-independent studies of
alpine glacier biodiversity are limited to ice and melt-water
(Franzetti et al 2013, Simon et al 2009, Wilhelm et al 2013).

The rapid democratization of high-throughput sequenc-
ing enabled metagenomics (Thomas et al 2012) provides an
attractive means of gaining deeper insight into cryoconite
ecosystem structure and functionality. In this study, we
exploited the development of the Institute of Biological,
Environmental and Rural Sciences (IBERS) Aberystwyth
Illumina HiScanSQ Facility to provide a snapshot of the
phylogenetic and functional diversity of an alpine cryoconite
metagenome. To our knowledge, the present study is the first
to describe a cryoconite metagenome, and the first application
of Illumina sequencing platforms to gain insights into a
glacial metagenome at sequencing depth much greater than
previously possible with pyrosequencing (Simon et al 2009).

2. Materials and methods

2.1. Study site and sampling

Rotmoosferner is a north-facing valley glacier in the Ötztal
Alps in Tirol, Austria located at 46◦50′N, 11◦03E presently
terminating at approximately 2450 m asl, and designated an

UNESCO Man-and-Biosphere Reserve. Rotmoosferner was
previously partially fed by a second glacier, Wasserfallferner,
but the rapid retreat and thinning of these glaciers
(Abermann et al 2009) disconnected the glaciers in 2005.
Rotmoosferner is shaded from afternoon sun by the ridgeline
of Wasserfallferner (figure 1). Mean annual air temperature
and precipitation are −1.3 ◦C and 820 mm w.e. respectively,
while the bedrock is dominated by amphibolite quartzo-
feldspathic rocks (Kaufmann 2001). The >2 km retreat of
Rotmoosferner has been documented since 1872, and the
pace of retreat has increased this century (Anesio et al
2010). Consequently, the processes of foreland colonization
and succession by plants, invertebrates and microbes over
the Rotmoosferner foreland chronosequence has been studied
(e.g. Erschbamer et al 2008, Kaufmann 2001, Philippot
et al 2011) to a greater extent than its supraglacial ecology,
although the bacterial secondary production and phylum level
distribution of supraglacial debris have been reported (Anesio
et al 2010, Philippot et al 2011).

Cryoconite was sampled on 8 and 14 September 2010
(two cryoconite holes on the first day, the remaining
12 on the second day) from 14 cryoconite holes in the
ablation zone of Rotmoosferner. Debris were aspirated
aseptically using plastic Pasteur pipettes into 15 ml centrifuge
tubes and transported on ice to Alpine Forschungsstelle-
Obergurgl within four hours, before freezing at −20 ◦C
for transfer to the Aberystwyth laboratory frozen in
insulated containers. Additionally, in situ measurements of
cryoconite bacterial primary and secondary production and
estimation of net ecosystem production were conducted
essentially as described by Anesio et al (2009) and
Hodson et al (2010) respectively and detailed in the
supplementary methods (available at stacks.iop.org/ERL/8/
035003/mmedia).

2.2. Metagenome sequencing

Cryoconite community genomic DNA was extracted using
Powersoil DNA kits (MoBio, Inc. Solana, California) as
described in the supplementary methods. Where possible,
equimolar quantities (214.3 ng per sample, except for Samples
3 (97 ng); 4 (15.5 ng), 7 (188 ng); 9 (151 ng); 14
(163.84 ng)) as measured by Quant-iT high sensitivity DNA
assay, (Invitrogen, Inc. Paisley, Scotland) of DNA extracts
were pooled for library preparation. Subsequently, the pooled
DNA was sheared by 18 cycles of sonication (30 s cycles)
using a Bioruptor (Diagenode, S.A., Liège, Belgium), and
purified with a Qiagen PCR purification kit (Qiagen, Ltd
Crawley, UK). The DNA was used to create an Illumina
paired-end library with an average insert size of 360 base pairs
(bp) according to the manufacturer’s instructions (Paired-End
Sample Prep Kit, Rev. E, Illumina, Ltd, Essex, UK), with
the exception of 14 PCR cycles during the enrichment
step. The library was sequenced at 2 × 51 bp using an
Illumina HiScanSQ at the IBERS Aberystwyth Translational
Genomics Facility according to standard procedures.
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Figure 1. (A) Study location with cryoconite holes numbered. (B) Rotmoosferner’s position beneath Wasserfallferner, (C) a typical
cryoconite hole (R10) on Rotmoosferner (ice axe for scale, 50 cm shaft) and (D) a supraglacial moss associated with arthropods (scale
approximately 3 cm).

2.3. Data processing and analysis

The 535 million reads were optimally assembled using the
De Brujin graph assembler AbySS 1.3.3 (Simpson et al 2009)
and the optimal assemblies were performed with k-mer length
of 31. The total assembly size was 1190 Mbp, in 9.7 million
contigs, of average size 122 bp and N50 of 146 bp, of which
the longest contig was 237 Kbp in size. Over 200 000 contigs
were longer than 500 bp: their combined length was 366 Mbp.

The assembled metagenome was imported as a FASTA
file into MG-RAST 3.2 (Meyer et al 2008) and annotated
by comparison to the M5NR database (Wilke et al 2012).
Investigations of phylogenetic diversity applied cutoffs of
60% minimum identity over 15 residues with an e value of
1 × 10−5 or less, while functionality comparisons utilized
cutoff e value of 1× 10−2 or less.

For functionality comparisons, the metagenome was
compared to those from soil (e.g. Fierer et al 2012),
biofilm-dominated matrices such as microbial mats (e.g. Varin
et al 2012), sludge (Martin et al 2006) and aquatic habitats
(NCBI project 33179 and (Khodadad and Foster 2012, Rusch
et al 2007)) made using a variety of sequencing platforms
and publically available on MG-RAST (see supplementary
table 1 for details, available at stacks.iop.org/ERL/8/
035003/mmedia). Read relative abundance per Subsystems
(Overbeek et al 2005) top level functional category (at
an e value of 1 × 10−2 or less) was used for Principal
Components Analysis (PCA) and fourth-root Bray–Curtis
similarities used for cluster analysis using PRIMER6 and
PERMANOVA+ (version 1.0.2 and version 6.1.12; Primer-
E, Ivybridge, UK). The only other glacial metagenome
datasets publically available presently, composed of 454
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Table 1. Radiometric measurement of primary (PP) and secondary production (SP) in Rotmoosferner cryoconites sampled for metagenome
sequencing on 14 September 2010. Values are the mean of triplicate incubations, and cryoconites with a positive ratio of SP:PP consistent
with net heterotrophy are highlighted in bold.

Primary (PP) and secondary production (SP) in rotmoosferner cryoconite

Cryoconite hole SP (µg C g−1 h−1) PP (µg C g−1 h−1) SP:PP ratio

R3 303.18 10.10 30.02
R4 182.77 5.60 32.64
R5 62.70 0.27 233.95
R6 43.76 0.03 1709.31
R7 0.31 5.16 0.06
R8 83.79 0.11 775.85
R9 66.06 1.74 37.97
R10 0.28 19.80 0.01
R11 47.41 0.08 585.33
R12 173.75 0.40 431.14
R13 23.90 0.60 39.53
R14 51.09 0.70 72.60

pyrosequencing of glacial ice from a German glacier
(Schneeferner, EBI-SRA SRA001163 Simon et al 2009),
were ported into MG-RAST for comparison. The alpine
cryoconite metagenome assembled in this study has been
deposited on MG-RAST as 4 491 734.3.

3. Results and discussion

Ratios between in situ heterotrophic and autotrophic produc-
tion rates of cryoconite sediments were calculated from the
12 cryoconite holes sampled on 14 September 2010. Primary
production ranged from 2.56 × 10−2–19.8 µg C g−1 h−1,
whereas secondary production ranged between 0.307–3.03×
102 µg C g−1 h−1 (table 1). Except for two samples (R7 and
R10), the majority showed a clear heterotrophic production
rate. Furthermore, results for three light and dark batch
incubations revealed net heterotrophy in the two cryoconite
holes (R11 and R12) subjected to net ecosystem productivity
estimation by change in dissolved inorganic carbon. The
photosynthesis estimates (means of triplicate incubations
of sediment from each hole = 9 and 29 µg C g−1 d−1

respectively) were lower than the respiration rates (mean 31
and 36 µg C g−1 d−1). In summary, the parallel in these
observations support the contention of net heterotrophy in
cryoconite at the time of sampling (Telling et al 2010), and
demonstrate rates of microbial activities in Rotmoosferner
cryoconite comparable to or greater than polar cryoconites
(Anesio et al 2009).

Metagenomic DNA was successfully extracted from all
14 cryoconite debris samples collected from the ablation
zone of Rotmoosferner in September 2010 (figures 1(A)–(D)).
Comparison of the Rotmoosferner cryoconite ecosystem by
pyrosequencing and T-RFLP to that of other glaciers will be
reported elsewhere. The fourteen samples comprised all the
cryoconite holes which could be found across the ablation
zone at the time of sampling, but other cryoconite holes in
proximity to crevasses may have been present.

As this study’s objective was to provide a first
metagenomic insight into the cryoconite ecosystem of an
alpine glacier, and the yield of DNA per sample was limited,

DNA samples from separate cryoconites were pooled for
library production.

It is known that glacier-specific factors, for example
geometry, surface hydrology and presumably lithology
(Edwards et al 2011, 2012), can affect cryoconite microbial
communities and that temporal variation is likely (Anesio and
Laybourn-Parry 2012). Therefore, although our study design
accounts for intra-glacier variation, our findings are subject to
the caveat that the metagenome presented is probably most
representative of cryoconite ecosystem genetic and functional
diversity during the late growing season at Rotmoosferner,
and that further insights are extrapolative in nature.

The optimal assembly comprised 9 727 829 sequences
totalling 1.19 × 109 bp with a mean sequence length of
122 bp (±534 bp, ±1SD). Over 99% of the sequences
passed MG-RAST internal QC; 23.2% and 23.4% of these
sequences contained predicted proteins with known and
unknown functions respectively.

Bacterial taxa overwhelmingly dominated the Rotmoos-
ferner cryoconite metagenome, with over 83% of all contigs
aligned at an e value of 1 × 10−5 or less to Bacteria within
the M5NR database. Eukaryotes accounted for only 0.6%.
Interestingly, while reports of the presence of Archaea in
cryoconite are restricted to Antarctic glaciers (Cameron et al
2012b) and one cryoconite hole in the Rocky Mountains
(Hamilton et al 2013), reads aligned to Archaea comprised
a very small minority (0.1%) of the metagenome, and were
predominantly Methanomicrobiales affiliated (2198 contigs of
2357 archaeal-affiliated contigs).

Considering that glacial environments often show high
virus–bacterium ratios, the paucity of viral-associated contigs
is surprising (Anesio and Bellas 2011). Considering the
limited information on the genetic diversity of viruses (Anesio
and Bellas 2011) from glaciers, their representation in
databases may be limited, thus contributing to the residue of
reads which could not be assigned to established taxa.

The bacterial affiliated contigs were distributed across
23 phyla (figure 2). Less than 1% of bacterial contigs
were unassigned at the level of phylum, and the reads
assigned to phyla ranged in abundance between 32
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Figure 2. Assignment of contigs at phylum level (e ≤ 1× 10−5) for (A) Bacteria (black bars) and Archaea (white bars) and (B) Eukaryotes
on the basis of MG-RAST analyses. Note the different scales for (A) and (B).

reads for Tenericutes and 2.6 × 106 reads affiliated to
Proteobacteria. Correspondingly, the top five bacterial phyla
were Proteobacteria (63.2% of bacterial reads), Bacteroidetes
(14.0%), Actinobacteria (11.3%), Firmicutes (3.3%) and
Cyanobacteria (2.5% of bacterial contigs). Within the
five-most dominant bacterial phyla, several classes were
present (figure 3). Of particular note is the abundance of
Betaproteobacteria, which accounted for half (52%) of all
Proteobacteria, with Alphaproteobacteria (24%) and other
classes accounting for the remainder. The dominance of
cryoconite bacterial communities by Proteobacteria has been
reported in other locations (Cameron et al 2012b, Edwards
et al 2011). In the Alps, the prominence of Betaproteobacteria
within glacial ice (Simon et al 2009), and supraglacial
debris on Rotmoosferner itself (Philippot et al 2011) have
been described. It is therefore likely that Proteobacteria,
and in particular Betaproteobacteria play important roles
within the Rotmoosferner cryoconite communities. This is
consistent with our understanding of Betaproteobacteria as
early colonizing, r-selected taxa (as related by Fierer et al
2007, 2010, Pianka 1970, Zumsteg et al 2012). Moreover,

Betaproteobacteria are prominent members of snowpack
communities (Hell et al 2013, Larose et al 2010), and
in alpine regions, Betaproteobacteria may play important
roles in foreland mineral weathering (Frey et al 2010)
and debris covered glaciers (Franzetti et al 2013). This
raises the potential for cryoconite ecosystems to act as
foci of biogeochemically reactive Betaproteobacteria which
consequently inoculate glacier forelands.

Interestingly, four classes (plus unclassified) of Bac-
teroidetes were present in roughly equal proportion, implying
phylum level ecological coherence (Philippot et al 2010) in
cryoconite. This phylum is abundant in a diverse array of
habitats, ranging from gastrointestinal tracts to the cryosphere,
but typically appears well-adapted to the exploitation of
recalcitrant polysaccharides (e.g. plant fibre; Thomas et al
2011). Their prevalence within this metagenome raises the
possibility of involvement in the degradation of plant-derived
organic matter. This is consistent with the prominence of
allochthonous organic matter (Stibal et al 2008) and in
particular the abundance of lower-order plant biomarkers

5
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Figure 3. Class level assignment of contigs (e ≤ 1× 10−5) for the five-most dominant bacterial phyla in the cryoconite metagenome.

(e.g. mosses and lichens) in Rocky Mountain cryoconite
(Xu et al 2009).

Indeed, for habitats typically associated with significant
rates of primary production (Anesio et al 2009), the
limited abundance of Cyanobacteria in the Rotmoosferner
cryoconite metagenome was surprising. Equally, eukaryotic
photosynthetic taxa were rare (figure 2). Although the
eukaryotic metagenome of Rotmoosferner cryoconite was
dominated by Streptophyta, it can be assumed that these
bryophytes represent legacy DNA within the cryoconite
community. Consequently, the metagenome sequence may
provide insight into sources of allochthonous organic matter
as well as community composition. The presence of mosses
derived from ice-marginal areas on the glacier surface
(Joklamys Porter et al 2008) is well known and, aptly, these
are apparent on Rotmoosferner, albeit in a less extravagant
fashion, and in association with arthropods (figure 1(D)).
The second-most dominant category of eukaryotic-affiliated
contigs were the Ascomycota, which have been described
on High Arctic glacier cryoconite (Edwards et al 2012).
Fungi are obligate osmotrophic heterotrophs, although other,
phototrophic eukarya (such as Chlorophyta) are present
at lesser abundance. The scarcity of these eukaryotic
phototrophs relative to eukaryotic heterotrophs and presumed
legacy DNA from Streptophyta appears compatible with the
net heterotrophic state revealed by process measurements.

In summary, the phylogenetic composition of the
Rotmoosferner cryoconite metagenome lends support to
the notion that the cryoconite ecosystem of Rotmoosferner
is typified by aggregates of predominantly heterotrophic
bacteria, minerals and allochthonous organic matter and
contemporaneous measurements of net ecosystem produc-
tivity for Rotmoosferner cryoconites generally indicated net
heterotrophy. It is therefore likely that (albeit, later in the
season, on this north-facing glacier) the cryoconite ecosystem
is typified by net heterotrophy and subsists on allochthonous
organic matter, rather than net autotrophy, which is supported
by the limited abundance of cyanobacterial and eukaryotic
phototroph sequences.

To investigate the functionality of the Rotmoosferner
cryoconite metagenome further, genes assigned to the
Subsystems functional category hierarchy at an e value of
1 × 10−2 or less were analysed (figure 4(A)). Although the
caveat that functional gene presence in glacial environments
does not necessarily equate to functionality (Brankatschk
et al 2010) applies to PCR detection of functional genes and
metagenomics alike, many metabolic pathways were revealed
(KEGG reconstruction: supplementary figure 1 available
at stacks.iop.org/ERL/8/035003/mmedia), with complete
glycolytic, TCA cycle, fatty and amino acid and nucleotide
metabolism detected.
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Figure 4. Distribution of Subsystems functional categories. A top level categories; bar represents the category mean relative abundance for
the 32 metagenomes described in text with error bar ±1 SEM framed against cryoconite (diamonds). (B) Log scale abundance of contigs
present in subsystems associated with macronutrient cycles.

First, comparison to a subset of publically available
metagenomes from comparable environments was sought.
The relative abundance of contigs assigned to functional
categories of the cryoconite metagenome was framed against
thirty-two other metagenomes. These metagenomes vary by
sequencing effort and platform, however broadly plausible
patterns in relative abundance were revealed.

Direct comparison (figure 4(A)) between the relative
abundance of functional categories present in metagenomes
from other environments and the cryoconite metagenome
sequence was broadly congruent in rank order, with clustering
based subsystems, carbohydrates, amino acids and derivatives
among the dominant category. Interestingly, genes assigned to
photosynthesis and dormancy or sporulation were the rarest
categories.

Some inconsistencies in rank order of categories between
cryoconite and the comparison set were apparent. These

include a relative functional enrichment of genes in the
regulation and cell signalling, fatty acids, lipids and
isoprenoids, stress response, aromatic compound metabolism,
sulfur metabolism, motility and chemotaxis categories in the
cryoconite metagenome.

Supplementary table 2 (available at stacks.iop.org/
ERL/8/035003/mmedia) lists the assignments in enriched
categories. Membrane transport demonstrated an abundance
of contigs matching ABC transporters and a complement
of protein secretion systems, while the fatty acids, lipids
and isoprenoids category was predominantly represented by
fatty acid degradation regulons and genes associated with the
metabolism of long chain fatty acids (cf plant biomarkers
detected by Xu et al (2009) in cryoconite) over biosynthetic
pathways. Within the category of sulfur metabolism, the
assimilation of both inorganic and organic sulfur was
represented, mainly by ferredoxin and glutathione uptake
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and metabolism. Glutathione is involved in acclimation to
redox stresses in Cyanobacteria (e.g. Cameron and Pakrasi
2010) and is a common thiol among Cyanobacteria and
Proteobacteria (Masip et al 2006). Indeed, the category of
stress response itself was dominated by subcategories asso-
ciated with fluctuating temperature, oxidative and osmotic
stress which may illustrate some of the stresses associated
with life in an environment with frequent freeze-thaw cycles.
Other sources of stress were apparent with enrichment
in aromatic compound metabolism (figure 4(B)). Although
the levels of xenobiotic contamination on Rotmoosferner
is unclear, cryoconite assemblages on other alpine glaciers
have to contend with anthropogenic contaminants (Margesin
et al 2002). Indeed, the category of virulence, disease and
defence was dominated by genes associated with heavy
metal resistance (29 448 contigs of 59 285 in the category),
including elements with anthropogenic radionuclides present
in other alpine glaciers (Tieber et al 2009) and antimicrobial
resistance genes (22 738 contigs), which have recently been
demonstrated on glaciers worldwide (Segawa et al 2013).

Cryoconite has been considered a supraglacial locus of
microbial activity and biogeochemical cycling on the basis of
process measurements, predominantly on Arctic glaciers (e.g.
Anesio et al 2009, 2010, Edwards et al 2011, Hodson et al
2007, Stibal et al 2009, Telling et al 2011, 2012). Functional
gene PCR reveals the genetic potential for cryoconite C and
N cycling (Cameron et al 2012a, Telling et al 2012), however
these observations were limited to polar glaciers.

Genes associated with N, S, Fe and P cycling
were apparent in the metagenome. Overall, a trend
towards assimilative metabolism was noted in each of
the four categories associated with these elemental cycles
(figure 4(B)). Although N fixation and denitrification
associated genes were present, contigs aligned with ammonia
assimilation and ammonification were more abundant,
indicative of a preference for ammonia mineralization
and uptake and hence a cryoconite nitrogen economy
centred upon ammonia recycling. Sulfur metabolism is
described earlier, while phylogenetically diverse categories
of Fe(II) and Fe(III) acquisition are present. The cycling of
phosphorus was indicated, with an abundance of phosphate
metabolism, uptake and transport (including the Pho regulon)
genes aligning to the cryoconite metagenome. This appears
consistent with a demand for phosphate, a limiting nutrient in
Svalbard cryoconite at least (Stibal et al 2009). In summary,
the cryoconite metagenome of Rotmoosferner reveals the
importance efficient acquisition of allochthonous carbon and
available nutrients under stressful conditions which may be
expected on the surface of an alpine glacier.

Second, comparison of the overall functional compo-
sition of the Rotmoosferner cryoconite metagenome with
other metagenomes was sought, using the set of 32
metagenomes from comparable habitats (supplementary table
1 available at stacks.iop.org/ERL/8/035003/mmedia). This
was achieved by multivariate analyses of functional category
relative abundances. Firstly, principal component analysis was
performed on the relative abundance of reads present in each
functional category, explaining 91.4% of variation in PC1-2

(figure 5(A)), and secondly hierarchical cluster analysis of
Bray–Curtis similarities derived from fourth-root transforms
of relative abundances was conducted (figure 5(B)).

Both analyses revealed ecologically plausible clustering
patterns; for example the ordination and clustering of
soil habitats as desert and non-desert soils, with cold
(polar) deserts indistinguishable from hot deserts clearly
recapitulates differences revealed in the original analyses
of these datasets (Fierer et al 2012). The Rotmoosferner
cryoconite metagenome fell within the cluster comprised
of aquatic habitats, and was most similar to the alpine
ice metagenome sequences and microbial mat type habitats,
including ice-shelf microbial mats, sludge from phosphate
removal biofilms and a stromatolite metagenome. Congruent
clustering of habitats typified by sedimentary biofilms such as
the above, in particular those from cold environments, implies
similar functions to exploit niches within these habitats as
well as commonality in the challenges faced by organisms.
Thus, it appears that the cryoconite metagenome was shaped
by selective forces comparable to those of other cold-dwelling
sediment-associated biofilms.

A key strategy for survival in such cold-dwelling
sediment-associated biofilms appears to be the promotion
of highly efficient nutrient scavenging and recycling, as
exemplified by the Proteobacteria dominated ice-shelf
microbial mat metagenomes (Varin et al 2010, 2012),
consistent with our analysis of the cryoconite metagenome.
Both habitat types are likely to require efficient (re)cycling
of allochthonous C and nutrients under stressful physical,
chemical and nutritional conditions.

The similarity between glacial ice and cryoconite
metagenomes is striking. Simon et al (2009) described a
metagenome from near-surface (deeper than 30 cm) glacial
ice during the ablation season. Since surface-decontaminated
glacial ice was directly filtered onto 0.2 µm membranes upon
melting (Simon et al 2009), it is possible that small aggregates
of aeolian debris and microbes (cf Irvine-Fynn et al 2012) as
well as purely englacial microbial communities were present.
Therefore, a bilateral translocation of microbe–mineral
aggregates dispersed in glacial ice and coalesced in cryoconite
holes may occur.

4. Conclusions

We report one of the larger environmental metagenome
assemblies to date, and, to our knowledge, the first
metagenome from cryoconite. As our analyses are limited to a
single location and time, their interpretation as a metagenomic
‘snapshot’ of a cryoconite ecosystem is advocated. This
invites the subsequent application of comparative approaches
to resolve how the cryoconite metagenome changes in
response to spatial, temporal and environmental variation.
Robust experimental design will be essential to gain further
insights (Knight et al 2012), as will linking metagenomics
and other meta-omics approaches (Turnbaugh and Gordon
2008). We are currently exploiting the rapid advances in
the capability and accessibility of post-Sanger sequencing
platforms to do so. Inevitably, since the mapping of metabolic
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Figure 5. Multivariate analyses of top level Subsystems functional category. (A) Principal components analysis of category relative
abundances and (B) hierarchical cluster analysis of Bray–Curtis distances of category relative abundances (with fourth-root transform).

diversity on a global scale is envisaged (the Earth Microbiome
Project; Gilbert et al 2010), as the glacial biome represents a
major freshwater habitat, the application of metagenomics to
glacial systems will undoubtedly grow.

Nevertheless, from our metagenomic ‘snapshot’, a
clearer picture of alpine cryoconite ecosystem structure and
functionality comes into focus. The cryoconite ecosystem
of Rotmoosferner appears dominated by Proteobacteria,
particularly Betaproteobacteria and that heterotrophs such
as Bacteroidetes are prevalent, presumably consuming
allochthonous organic matter such as the bryophyte detritus
detected in the metagenome (or apparent in biomarker studies
Xu et al (2009)). The genetic potential for contributions
to several nutrient cycles is revealed. Overall, it is likely
that cryoconite communities on alpine glaciers exist as
efficient scavengers and recyclers of allochthonous carbon and
nutrients similar to microbe–mineral aggregates from other
icy environments (Varin et al 2010, 2012).

In conclusion, although we effectively advocate the
transition from a metagenomic ‘snapshot’ to a metagenomic
‘album’ of cryoconite ecosystems, it is clear that the
cryoconite metagenome presented herein reveals the genetic
foundations of an ice-cold hot-spot of microbial diversity and
activity within the glacial biome.
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