3,301 research outputs found

    Contrasting impacts of land use change on phylogenetic and functional diversity of tropical forest birds

    Get PDF
    1. Biodiversity conservation strategies increasingly target maintaining evolutionary history and the resilience of ecosystem function, not just species richness (SR). This has led to the emergence of two metrics commonly proposed as tools for decision making: phylogenetic diversity (PD) and functional diversity (FD). Yet the extent to which they are interchangeable remains poorly understood. 2. We explore shifts in and relationships between FD and PD of bird communities across a disturbance gradient in Borneo, from old-growth tropical forest to oil palm plantation. 3. We show a marked decline in PD, and an increase in phylogenetic mean nearest taxon distance (MNTD) from forest to oil palm, in line with declining SR across the gradient. However, phylogenetic mean pairwise distance (MPD) is constrained by forest logging more than by conversion to oil palm, taking account of SR. 4. The decline in FD across the gradient is less severe than in PD, with all metrics indicating relatively high trait diversity in oil palm despite low SR, although functional redundancy is much reduced. Accounting for SR, levels of functional over- or under-dispersion of bird communities are strongly coupled to habitat disturbance level rather than to any equivalent phylogenetic metric. 5. Policy Implications. We suggest that while phylogenetic diversity (PD) is an improvement on species richness as a proxy for functional diversity (FD), conservation decisions based on PD alone cannot reliably safeguard maximal FD. Thus, PD and FD are related but still complementary. Priority setting exercises should use these metrics in combination to identify conservation targets

    Extrapolating Monte Carlo Simulations to Infinite Volume: Finite-Size Scaling at ξ/L ≫1

    Get PDF
    We present a simple and powerful method for extrapolating finite-volume Monte Carlo data to infinite volume, based on finite-size-scaling theory. We discuss carefully its systematic and statistical errors, and we illustrate it using three examples: the two-dimensional three-state Potts antiferromagnet on the square lattice, and the two-dimensional O(3)O(3) and O()O(\infty) σ\sigma-models. In favorable cases it is possible to obtain reliable extrapolations (errors of a few percent) even when the correlation length is 1000 times larger than the lattice

    Decays of an exotic 1-+ hybrid meson resonance in QCD

    Get PDF
    We present the first determination of the hadronic decays of the lightest exotic JPC=1+J^{PC}=1^{-+} resonance in lattice QCD. Working with SU(3) flavor symmetry, where the up, down and strange quark masses approximately match the physical strange-quark mass giving mπ700m_\pi \sim 700 MeV, we compute finite-volume spectra on six lattice volumes which constrain a scattering system featuring eight coupled channels. Analytically continuing the scattering amplitudes into the complex energy plane, we find a pole singularity corresponding to a narrow resonance which shows relatively weak coupling to the open pseudoscalar--pseudoscalar, vector--pseudoscalar and vector--vector decay channels, but large couplings to at least one kinematically-closed axial-vector--pseudoscalar channel. Attempting a simple extrapolation of the couplings to physical light-quark mass suggests a broad π1\pi_1 resonance decaying dominantly through the b1πb_1 \pi mode with much smaller decays into f1πf_1 \pi, ρπ\rho \pi, ηπ\eta' \pi and ηπ\eta \pi. A large total width is potentially in agreement with the experimental π1(1564)\pi_1(1564) candidate state, observed in ηπ\eta \pi, ηπ\eta' \pi, which we suggest may be heavily suppressed decay channels

    Mechanism-based model characterizing bidirectional interaction between PEGylated liposomal CKD-602 (S-CKD602) and monocytes in cancer patients

    Get PDF
    S-CKD602 is a PEGylated liposomal formulation of CKD-602, a potent topoisomerase I inhibitor. The objective of this study was to characterize the bidirectional pharmacokinetic-pharmacodynamic (PK-PD) interaction between S-CKD602 and monocytes. Plasma concentrations of encapsulated CKD-602 and monocytes counts from 45 patients with solid tumors were collected following intravenous administration of S-CKD602 in the phase I study. The PK-PD models were developed and fit simultaneously to the PK-PD data, using NONMEM®. The monocytopenia after administration of S-CKD602 was described by direct toxicity to monocytes in a mechanism-based model, and by direct toxicity to progenitor cells in bone marrow in a myelosuppression-based model. The nonlinear PK disposition of S-CKD602 was described by linear degradation and irreversible binding to monocytes in the mechanism-based model, and Michaelis-Menten kinetics in the myelosuppression-based model. The mechanism-based PK-PD model characterized the nonlinear PK disposition, and the bidirectional PK-PD interaction between S-CKD602 and monocytes. © 2012 Cárdenas et al, publisher and licensee Dove Medical Press Ltd

    Improved pregnancy rate with administration of hCG after intrauterine insemination: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In natural cycles, women conceive when intercourse takes place during a six-day period ending on the day of ovulation. The current practice in intrauterine insemination (IUI) cycles is to perform the IUI 24-36 hours after the hCG administration, when the ovulation is already imminent. In this study hCG was administered after the IUI, which more closely resembles the fertilisation process in natural cycles.</p> <p>Methods</p> <p>All the IUIs performed since the beginning of 2007 were analysed retrospectively. Our standard protocol has been to perform the IUI 24-32 hours after hCG administration. From the end of 2008, we started to inject hCG after the IUI at random. The main outcome measure was the result of a urinary pregnancy test. Generalized Estimating Equations (GEE) was used to identify independent factors affecting the cycle outcome.</p> <p>Results</p> <p>The analysis included 228 cycles with hCG administered before and 104 cycles hCG administered after the IUI. The pregnancy rates were 10.9% and 19.6% (P = 0.040), respectively. Independent factors (OR, 95% CI) affecting the cycle outcome were sperm count (2.65, 1.20-5.81), number of follicles > 16 mm at IUI (2.01, 1.07-3.81) and the time of hCG administration (2.21, 1.16-4.19).</p> <p>Conclusion</p> <p>Improved pregnancy rate was observed with administration of hCG after IUI.</p

    Isoscalar ππ Scattering and the σ Meson Resonance from QCD

    Get PDF
    We present for the first time a determination of the energy dependence of the isoscalar ππ elastic scattering phase shift within a first-principles numerical lattice approach to QCD. Hadronic correlation functions are computed including all required quark propagation diagrams, and from these the discrete spectrum of states in the finite volume defined by the lattice boundary is extracted. From the volume dependence of the spectrum, we obtain the S\textit{S}-wave phase shift up to the KKK\overline{K} threshold. Calculations are performed at two values of the u\textit{u}, d\textit{d} quark mass corresponding to mπ=236,391\textit{m}_{\pi} = 236, 391 MeV , and the resulting amplitudes are described in terms of a σ meson which evolves from a bound state below the ππ threshold at the heavier quark mass to a broad resonance at the lighter quark mass.The research was supported in part under an Advanced Scientific Computing Research (ASCR), Advanced Leadership Computing Challenge (ALCC) grant, and used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This research is also part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (Grants No. OCI-0725070 and No. ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing computing resources. Gauge configurations were generated using resources awarded from the U.S. Department of Energy Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program at Oak Ridge National Lab and also resources awarded at NERSC. R. A. B., R. G. E., and J. J. D. acknowledge support from U.S. Department of Energy Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, manages and operates Jefferson Lab. J. J. D. acknowledges support from the U.S. Department of Energy Early Career Contract No. DE-SC0006765. D. J. W. acknowledges support from the Isaac Newton Trust/University of Cambridge Early Career Support Scheme [RG74916]

    Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations

    Get PDF
    Consumer products, such as foods, contain numerous polymeric and particulate additives that play critical roles in maintaining their stability, quality and function. The resulting materials exhibit complex bulk and interfacial rheological responses, and often display a distinctive power-law response under standard rheometric deformations. These power laws are not conveniently described using conventional rheological models, without the introduction of a large number of relaxation modes. We present a constitutive framework using fractional derivatives to model the power-law responses often observed experimentally. We first revisit the concept of quasi-properties and their connection to the fractional Maxwell model (FMM). Using Scott-Blair's original data, we demonstrate the ability of the FMM to capture the power-law response of ‘highly anomalous’ materials. We extend the FMM to describe the viscoelastic interfaces formed by bovine serum albumin and solutions of a common food stabilizer, Acacia gum. Fractional calculus allows us to model and compactly describe the measured frequency response of these interfaces in terms of their quasi-properties. Finally, we demonstrate the predictive ability of the FMM to quantitatively capture the behaviour of complex viscoelastic interfaces by combining the measured quasi-properties with the equation of motion for a complex fluid interface to describe the damped inertio-elastic oscillations that are observed experimentally.United States. National Aeronautics and Space Administration (Microgravity Fluid Sciences (Code UG) for support of this research under grant no. NNX09AV99G
    corecore