51,688 research outputs found
High temperature circuit breaker
Alternating current circuit breaker is suitable for reliable long-term service at 1000 deg F in the vacuum conditions of outer space. Construction materials are resistant to nuclear radiation and vacuum welding. Service test conditions and results are given
Analytical methods for bacterial kinetics studies
Methods utilize mathematical equations and models and specialized computer techniques. Techniques apply to food production, complex chemicals production, and polluted water purification
Scaling Properties of Paths on Graphs
Let be a directed graph on finitely many vertices and edges, and assign a
positive weight to each edge on . Fix vertices and and consider the
set of paths that start at and end at , self-intersecting in any number
of places along the way. For each path, sum the weights of its edges, and then
list the path weights in increasing order. The asymptotic behaviour of this
sequence is described, in terms of the structure and type of strongly connected
components on the graph. As a special case, for a Markov chain the asymptotic
probability of paths obeys either a power law scaling or a weaker type of
scaling, depending on the structure of the transition matrix. This generalizes
previous work by Mandelbrot and others, who established asymptotic power law
scaling for special classes of Markov chains.Comment: 23 pages, 2 figure
Mass-spectrometric study of the rhenium-oxygen system
Rhenium, having the second highest melting point among the metals, is used for refractory containers. Thermodynamic values for rhenium oxide is determined by mass spectrometry and X ray diffraction
Statistical Mechanics of Vibration-Induced Compaction of Powders
We propose a theory which describes the density relaxation of loosely packed,
cohesionless granular material under mechanical tapping. Using the compactivity
concept we develope a formalism of statistical mechanics which allows us to
calculate the density of a powder as a function of time and compactivity. A
simple fluctuation-dissipation relation which relates compactivity to the
amplitude and frequency of a tapping is proposed. Experimental data of
E.R.Nowak et al. [{\it Powder Technology} 94, 79 (1997) ] show how density of
initially deposited in a fluffy state powder evolves under carefully controlled
tapping towards a random close packing (RCP) density. Ramping the vibration
amplitude repeatedly up and back down again reveals the existence of reversible
and irreversible branches in the response. In the framework of our approach the
reversible branch (along which the RCP density is obtained) corresponds to the
steady state solution of the Fokker-Planck equation whereas the irreversible
one is represented by a superposition of "excited states" eigenfunctions. These
two regimes of response are analyzed theoretically and a qualitative
explanation of the hysteresis curve is offered.Comment: 11 pages, 2 figures, Latex. Revised tex
Composition and luminescence of AlInGaN layers grown by plasma-assisted molecular beam epitaxy
A study of AlInGaN epilayers, grown by plasma-assisted molecular beam epitaxy, was performed using spatially resolved x-ray microanalysis and luminescence spectroscopy in order to investigate competition between the incorporation of In, Al, and Ga as a function of the growth temperature in the 565-660 °C range and the nominal AlN mole fraction. The samples studied have AlN and InN mole fractions in the ranges of 4%-30% and 0%-16%, respectively. Composition measurements show the effect of decreasing temperature to be an increase in the incorporation of InN, accompanied by a small but discernible decrease in the ratio of GaN to AlN mole fractions. The incorporation of In is also shown to be significantly increased by decreasing the Al mole fraction. Optical emission peaks, observed by cathodoluminescence mapping and by photoluminescence, provide further information on the epilayer compositions as a function of substrate temperature, and the dependencies of peak energy and linewidth are plotted
Helicity operators for mesons in flight on the lattice
Motivated by the desire to construct meson-meson operators of definite
relative momentum in order to study resonances in lattice QCD, we present a set
of single-meson interpolating fields at non-zero momentum that respect the
reduced symmetry of a cubic lattice in a finite cubic volume. These operators
follow from the subduction of operators of definite helicity into irreducible
representations of the appropriate little groups. We show their effectiveness
in explicit computations where we find that the spectrum of states interpolated
by these operators is close to diagonal in helicity, admitting a description in
terms of single-meson states of identified J^{PC}. The variationally determined
optimal superpositions of the operators for each state give rapid relaxation in
Euclidean time to that state, ideal for the construction of meson-meson
operators and for the evaluation of matrix elements at finite momentum.Comment: 25 pages, 14 figures; v2: minor changes to reflect journal versio
- …
