817 research outputs found

    Experimental Inoculation of House Sparrows (\u3ci\u3ePasser domesticus\u3c/i\u3e) with Buggy Creek Virus

    Get PDF
    We performed experimental inoculations of house sparrows (Passer domesticus) with Buggy Creek virus (BCRV), a poorly known alphavirus (Togaviridae) vectored primarily by the swallow bug (Hemiptera: Cimicidae: Oeciacus vicarius) that is an ectoparasite of the cliff swallow (Petrochelidon pyrrhonota) and house sparrow. Viremias were detected by plaque assay in two of six birds on days 1–3 postinoculation; viremia was highest on day 2. Viral RNA was detected by reverse transcriptase-polymerase chain reaction (RT-PCR) in blood of six of 12 birds ranging from day 1 to day 15 postinoculation. Infectious BCRV was detected in nasopharyngeal swab samples from two birds by plaque assay. Three control birds that were housed with viremic individuals showed evidence of BCRV RNA in blood (by RT-PCR), suggesting possible bird-to-bird transmission of this virus. Viral RNA also was detected by RT-PCR in brain and skin tissue of six birds on necropsy at the end of the 16-day experiment. Introduced house sparrows are apparently a competent amplifying host for BCRV, and their presence year-round at cliff swallow colonies may facilitate persistence of the virus locally, especially when cliff swallows abandon a site temporarily. The findings that BCRV can be shed orally, that it persists in bird skin, and that control birds could apparently be infected by conspecifics suggest that this virus may be transmitted from bird to bird in the crowded conditions of many cliff swallow colonies

    Experimental Inoculation of House Sparrows (\u3ci\u3ePasser domesticus\u3c/i\u3e) with Buggy Creek Virus

    Get PDF
    We performed experimental inoculations of house sparrows (Passer domesticus) with Buggy Creek virus (BCRV), a poorly known alphavirus (Togaviridae) vectored primarily by the swallow bug (Hemiptera: Cimicidae: Oeciacus vicarius) that is an ectoparasite of the cliff swallow (Petrochelidon pyrrhonota) and house sparrow. Viremias were detected by plaque assay in two of six birds on days 1–3 postinoculation; viremia was highest on day 2. Viral RNA was detected by reverse transcriptase-polymerase chain reaction (RT-PCR) in blood of six of 12 birds ranging from day 1 to day 15 postinoculation. Infectious BCRV was detected in nasopharyngeal swab samples from two birds by plaque assay. Three control birds that were housed with viremic individuals showed evidence of BCRV RNA in blood (by RT-PCR), suggesting possible bird-to-bird transmission of this virus. Viral RNA also was detected by RT-PCR in brain and skin tissue of six birds on necropsy at the end of the 16-day experiment. Introduced house sparrows are apparently a competent amplifying host for BCRV, and their presence year-round at cliff swallow colonies may facilitate persistence of the virus locally, especially when cliff swallows abandon a site temporarily. The findings that BCRV can be shed orally, that it persists in bird skin, and that control birds could apparently be infected by conspecifics suggest that this virus may be transmitted from bird to bird in the crowded conditions of many cliff swallow colonies

    In Situ EXAFS Study of Sr Adsorption on TiO2(110) under High Ionic Strength Wastewater Conditions

    Get PDF
    In order to provide important details concerning the adsorption reactions of Sr, batch reactions and a set of both ex situ and in situ Grazing Incidence X-ray Absorption Fine Structure (GIXAFS) adsorption experiments were completed on powdered TiO2 and on rutile(110), both reacted with either SrCl2 or SrCO3 solutions. TiO2 sorption capacity for strontium (Sr) ranges from 550 ppm (SrCl2 solutions, second order kinetics) to 1400 ppm (SrCO3 solutions, first order kinetics), respectively, and is rapid. Sr adsorption decreased as a function of chloride concentration but significantly increased as carbonate concentrations increased. In the presence of carbonate, the ability of TiO2 to remove Sr from the solution increases by a factor of ~4 due to rapid epitaxial surface precipitation of an SrCO3 thin film, which registers itself on the rutile(110) surface as a strontianite-like phase (d-spacing 2.8 Å). Extended X-ray Absorption Fine Structure (EXAFS) results suggest the initial attachment is via tetradental inner-sphere Sr adsorption. Moreover, adsorbates from concentrated SrCl2 solutions contain carbonate and hydroxyl species, which results in both inner- and outer-sphere adsorbates and explains the reduced Sr adsorption in these systems. These results not only provide new insights into Sr kinetics and adsorption on TiO2 but also provide valuable information concerning potential improvements in effluent water treatment models and are pertinent in developing treatment methods for rutile-coated structural materials within nuclear power plants

    Spectrally tunable magnetic nanoparticles designed for distribution/recollection applications

    Get PDF
    The comprehensive goal of this research is the synthesis and characterization of nanomaterials that are spectrally tunable in terms of their electromagnetic signal, are robust, magnetic (allowing their piloted movement), and have the potential to be functionalized for the detection of CBRNE threats. Various chemical methods were utilized for synthesis of magnetic (iron) and luminescent rare earth (RE) components, and their mixtures. Effects of integrating an iron core into RE luminescent lattices (excited by UV, emit in the VIS) were investigated. The determination of the optimum balances between magnetic and luminescent components such that the magnetism was maximized while maintaining acceptable fluorescence integrity will be discussed. The emphasis of this work is focused on developing a distributed sensor suitable for use in the terrestrial environment. The robust properties of using a RE luminescent shell would allow the particles to be resistant to photobleaching. Additionally the chemical stability of the RE shell would allow operation in a variety of pH conditions. The magnetic core will ultimately allow the distributed particles to be recollected

    Elucidating Hidden and Enduring Weaknesses in Dust Emission Modeling

    Get PDF
    Large-scale classical dust cycle models, developed more than two decades ago, assume for simplicity that the Earth's land surface is devoid of vegetation, reduce dust emission estimates using a vegetation cover complement, and calibrate estimates to observed atmospheric dust optical depth (DOD). Consequently, these models are expected to be valid for use with dust-climate projections in Earth System Models. We reveal little spatial relation between DOD frequency and satellite observed dust emission from point sources (DPS) and a difference of up to 2 orders of magnitude. We compared DPS data to an exemplar traditional dust emission model (TEM) and the albedo-based dust emission model (AEM) which represents aerodynamic roughness over space and time. Both models overestimated dust emission probability but showed strong spatial relations to DPS, suitable for calibration. Relative to the AEM calibrated to the DPS, the TEM overestimated large dust emission over vast vegetated areas and produced considerable false change in dust emission. It is difficult to avoid the conclusion that calibrating dust cycle models to DOD has hidden for more than two decades, these TEM modeling weaknesses. The AEM overcomes these weaknesses without using masks or vegetation cover data. Considerable potential therefore exists for ESMs driven by prognostic albedo, to reveal new insights of aerosol effects on, and responses to, contemporary and environmental change projections

    A note on the use of drag partition in aeolian transport models

    Get PDF
    Sediment transport equations used in wind erosion and dust emission models generally incorporate a threshold for particle motion (u*t) with a correction function to account for roughness-induced momentum reduction and aerodynamic sheltering. The prevailing approach is to adjust u*t by the drag partition R, estimated as the ratio of the bare soil threshold (u*ts) to that of the surface in the presence of roughness elements (u*tr). Here, we show that application of R to adjust only the entrainment threshold (u*t = u*ts/R) is physically inconsistent with the effect of roughness on the momentum partition as represented in models and produces overestimates of the sediment flux density (Q). Equations for Q typically include a friction velocity scaling term (u*n). As Q scales with friction velocity at the soil surface (us*), rather than total friction velocity (u*) acting over the roughness layer, u*n must be also adjusted for roughness effects. Modelling aeolian transport as a function of us* represents a different way of thinking about the application of some drag partition schemes but is consistent with understanding of aeolian transport physics. We further note that the practice of reducing Q by the vegetation cover fraction to account for the physically-protected surface area constitutes double accounting of the surface protection when R is represented through the basal-to-frontal area ratio of roughness elements (σ) and roughness density (λ). If the drag partition is implemented fully, additional adjustment for surface protection is unnecessary to produce more accurate aeolian transport estimates. These findings apply equally to models of the vertical dust flux

    The dynamics of single spike-evoked adenosine release in the cerebellum

    Get PDF
    The purine adenosine is a potent neuromodulator in the brain, with roles in a number of diverse physiological and pathological processes. Modulators such as adenosine are difficult to study as once released they have a diffuse action (which can affect many neurones) and, unlike classical neurotransmitters, have no inotropic receptors. Thus rapid postsynaptic currents (PSCs) mediated by adenosine (equivalent to mPSCs) are not available for study. As a result the mechanisms and properties of adenosine release still remain relatively unclear. We have studied adenosine release evoked by stimulating the parallel fibres in the cerebellum. Using adenosine biosensors combined with deconvolution analysis and mathematical modelling, we have characterised the release dynamics and diffusion of adenosine in unprecedented detail. By partially blocking K+ channels, we were able to release adenosine in response to a single stimulus rather than a train of stimuli. This allowed reliable sub-second release of reproducible quantities of adenosine with stereotypic concentration waveforms that agreed well with predictions of a mathematical model of purine diffusion. We found no evidence for ATP release and thus suggest that adenosine is directly released in response to parallel fibre firing and does not arise from extracellular ATP metabolism. Adenosine release events showed novel short-term dynamics, including facilitated release with paired stimuli at millisecond stimulation intervals but depletion-recovery dynamics with paired stimuli delivered over minute time scales. These results demonstrate rich dynamics for adenosine release that are placed, for the first time, on a quantitative footing and show strong similarity with vesicular exocytosis

    Movement Competency Screens Can Be Reliable In Clinical Practice By A Single Rater Using The Composite Score

    Get PDF
    Background: Movement competency screens (MCSs) are commonly used by coaches and clinicians to assess injury risk. However, there is conflicting evidence regarding MCS reliability. Purpose: This study aimed to: (i) determine the inter- and intra-rater reliability of a sport specific field-based MCS in novice and expert raters using different viewing methods (single and multiple views); and (ii) ascertain whether there were familiarization effects from repeated exposure for either raters or participants. Study Design: Descriptive laboratory study Methods: Pre-elite youth athletes (n=51) were recruited and videotaped while performing a MCS comprising nine dynamic movements in three separate trials. Performances were rated three times with a minimal four-week wash out between testing sessions, each in randomized order by 12 raters (3 expert, 9 novice), using a three-point scale. Kappa score, percentage agreement and intra-class correlation were calculated for each movement individually and for the composite score. Results: Fifty-one pre-elite youth athletes (15.0±1.6 years; n=33 athletics, n=10 BMX and n=8 surfing) were included in the study. Based on kappa score and percentage agreement, both inter- and intra-rater reliability were highly variable for individual movements but consistently high (>0.70) for the MCS composite score. The composite score did not increase with task familiarization by the athletes. Experts detected more movement errors than novices and both rating groups improved their detection of errors with repeated viewings of the same movement. Conclusions: Irrespective of experience, raters demonstrated high variability in rating single movements, yet preliminary evidence suggests the MCS composite score could reliably assess movement competency. While athletes did not display a familiarization effect after performing the novel tasks within the MCS for the first time, raters showed improved error detection on repeated viewing of the same movement
    corecore