523 research outputs found

    Sexual activity between victims and perpetrators following a sexual assault: A systematic literature review and critical feminist analysis

    Get PDF
    Rarely are perpetrators found guilty of sexual assault when the victim engaged in sex with the perpetrator following the sexual assault. Although the recent trial of Harvey Weinstein is an exception, the fact that his accusers engaged in consensual sex with him following the alleged assaults ignited debate that garnered international attention. The purpose of this paper was to conduct a systematic review to (1) document the extent to which victims engage in sex with the perpetrator following a sexual assault and (2) examine theoretical explanations for this phenomenon. Five peer-reviewed journal articles published between 1988 and 2016 were identified. Whereas rates of sex following a sexual assault where it is unclear based on study methodology if it was consensual ranged from 11 % to 64 %, rates of consensual sex following a sexual assault (where it is clear based on study methodology that it was consensual) ranged from 8 % to 32 %. Although evolutionary perspectives have been used by some researchers to explain this phenomenon, we suggest alternative explanations, grounded in feminist understandings of violence against women, for why a victim may have consensual sex with a perpetrator following a sexual assault. Finally, we identify areas for future research and discuss practice-based implications

    Fabrication and Manipulation of Metallic Nanofeatures and CVD Graphene through Nanopatterning and Templating

    Get PDF
    Nanotechnology holds exciting potential to significantly advance research in many fields such as sensors, environmental sustainability and cleanup, energy harvesting and storage, as well as nanoelectronics. The resulting high demand for implementation into these areas has simultaneously created a large need for effective fabrication methods for nanostructured materials. It is important the fabrication methods are capable of significant control over size, orientation, and structural configuration of nanomaterials for effective function in these applications. Nanopatterning and templating are a promising means to achieve extreme selectivity over these parameters, and additionally be used as tools to control the growth and structure of large-scale materials through nanoscale manipulation. In this research, nanopatterning and templating are implemented to create metallic nanowire structures on surfaces of silicon substrates with highly selectivity over nanowire placement and design. Additionally, templating is incorporated in graphene growth on metallic substrates to influence the quality of graphene films, and further film patterning is used to improve the graphene electrical and optical properties. The first part of this work focuses on the fabrication of copper metallic nanowires through resist patterning coupled with electroless copper deposition. An atomic force microscope is used to selectively remove portions of a self-assembled monolayer resist on a silicon substrate, with patterns reaching down to widths of 20 nm. Electroless metal plating provides a facile way to deposit metal in selectively activated areas on surfaces with nanoscale dimensions. Here, it is employed to deposit copper selectively within these nanopatterned lines to create copper nanowire features. Through variation of the electroless metal solution conditions, the dimensions of the AFM-patterned line, and the doping of the underlying silicon substrate, the dimensions and uniformity of copper deposition within AFM-patterned lines can be influenced. Furthermore, this method provides a successful level of control to construct copper nanowire features between gold microelectrodes, which allows the electrical properties of these nanowires to be examined. The ability to selectively place nanowire features on a substrate surface with dimensions down to the tens of nanometers, as well as the capability to manipulate the nanowire size and uniformity, make this a promising method to construct metallic nanofeatures for complex nanodevices and circuitry. The second portion of this research investigates techniques to develop high quality graphene films produced by chemical vapor deposition (CVD) on copper substrates. Chemical vapor deposition shows great potential for developing graphene films of large area, but unfortunately CVD graphene oftentimes possesses low conductivity values due to an increased amount of misaligned grain boundaries and point defects, and oftentimes exhibits low optical transparency. The focus of this research is to better understand the role the copper substrate plays in CVD graphene formation, and to find ways to directly enhance CVD graphene quality through changes in the copper substrate template. The surface morphology, optical transmittance, and electrical properties of CVD graphene manufactured on two copper substrates with different surface structures were investigated. It was found that differences in the copper substrate grain alignment and crystal lattice could significantly influence the deposition and quality of graphene on copper substrates. Furthermore, the possibility of developing graphene films on nonmetallic substrates, as well as enhancing its properties through chemical doping, is demonstrated by nanopatterning and templating of graphene films

    Conformational analysis of small organic molecules using NOE and RDC data: A discussion of strychnine and a-methylene-y-butyrolactone

    Get PDF
    To understand the properties and/or reactivity of an organic molecule, an understanding of its three-dimensional structure is necessary. Simultaneous determination of configuration and conformation often poses a daunting challenge. Thus, the more information accessible for a given molecule, the better. Additionally to (3)J-couplings, two sources of information, quantitative NOE and more recently also RDCs, are used for conformational analysis by NMR spectroscopy. In this paper, we compare these sources of conformational information in two molecules: the configurationally well-characterized strychnine 1, and the only recently configurationally and conformationally characterized ?-methylene-?-butyrolactone 2. We discuss possible sources of error in the measurement and analysis process, and how to exclude them. By this means, we are able to bolster the previously proposed flexibility for these two molecules

    Gene expression profiling of aging reveals activation of a p53-mediated transcriptional program

    Get PDF
    BACKGROUND: Aging has been associated with widespread changes at the gene expression level in multiple mammalian tissues. We have used high density oligonucleotide arrays and novel statistical methods to identify specific transcriptional classes that may uncover biological processes that play a central role in mammalian aging. RESULTS: We identified 712 transcripts that are differentially expressed in young (5 month old) and old (25-month old) mouse skeletal muscle. Caloric restriction (CR) completely or partially reversed 87% of the changes in expression. Examination of individual genes revealed a transcriptional profile indicative of increased p53 activity in the older muscle. To determine whether the increase in p53 activity is associated with transcriptional activation of apoptotic targets, we performed RT-PCR on four well known mediators of p53-induced apoptosis: puma, noxa, tnfrsf10b and bok. Expression levels for these proapoptotic genes increased significantly with age (P < 0.05), while CR significantly lowered expression levels for these genes as compared to control fed old mice (P < 0.05). Age-related induction of p53-related genes was observed in multiple tissues, but was not observed in young SOD2(+/- )and GPX4(+/- )mice, suggesting that oxidative stress does not induce the expression of these genes. Western blot analysis confirmed that protein levels for both p21 and GADD45a, two established transcriptional targets of p53, were higher in the older muscle tissue. CONCLUSION: These observations support a role for p53-mediated transcriptional program in mammalian aging and suggest that mechanisms other than reactive oxygen species are involved in the age-related transcriptional activation of p53 targets

    Evidence For Gene-Smoking interactions For Hearing Loss and Deafness in Japanese american Families

    Get PDF
    BACKGROUND: This study investigated the relationship between smoking and hearing loss and deafness (HLD) and whether the relationship is modified by genetic variation. Data for these analyses was from the subset of Japanese American families collected as part of the American Diabetes Association Genetics of Non-insulin Dependent Diabetes Mellitus study. Logistic regression with generalized estimating equations assessed the relationship between HLD and smoking. Nonparametric linkage analysis identified genetic regions harboring HLD susceptibility genes and ordered subset analysis was used to identify regions showing evidence for gene-smoking interactions. Genetic variants within these candidate regions were then each tested for interaction with smoking using logistic regression models. RESULTS: After adjusting for age, sex, diabetes status and smoking duration, for each pack of cigarettes smoked per day, risk of HLD increased 4.58 times (odds ratio (OR) = 4.58; 95% Confidence Interval (CI): (1.40,15.03)), and ever smokers were over 5 times more likely than nonsmokers to report HLD (OR = 5.22; 95% CI: (1.24, 22.03)). Suggestive evidence for linkage for HLD was observed in multiple genomic regions (Chromosomes 5p15, 8p23 and 17q21), and additional suggestive regions were identified when considering interactions with smoking status (Chromosomes 7p21, 11q23, 12q32, 15q26, and 20q13) and packs-per-day (Chromosome 8q21). CONCLUSIONS: to our knowledge this was the first report of possible gene-by-smoking interactions in HLD using family data. Additional work, including independent replication, is needed to understand the basis of these findings. HLD are important public health issues and understanding the contributions of genetic and environmental factors may inform public health messages and policies

    Doped graphene nanohole arrays for flexible transparent conductors

    Get PDF
    Graphene nanohole arrays (GNAs) were fabricated using nanoimprint lithography. The improved optical transmittance of GNAs is primarily due to the reduced surface coverage of graphene from the nanohole fabrication. Importantly, the exposed edges of the nanoholes provided effective sites for chemical doping using thionyl chloride was shown to enhance the conductance by a factor of 15–18 in contrast to only 2-4 for unpatterned graphene. GNAs can provide a unique scheme for improving both optical transmittance and electrical conductivity of graphene-based transparent conductors

    A Proposed Role for Pro-Inflammatory Cytokines in Damaging Behavior in Pigs

    Get PDF
    Sickness can change our mood for the worse, leaving us sad, lethargic, grumpy and less socially inclined. This mood change is part of a set of behavioral symptoms called sickness behavior and has features in common with core symptoms of depression. Therefore, the physiological changes induced by immune activation, for example following infection, are in the spotlight for explaining mechanisms behind mental health challenges such as depression. While humans may take a day off and isolate themselves until they feel better, farm animals housed in groups have only limited possibilities for social withdrawal. We suggest that immune activation could be a major factor influencing social interactions in pigs, with outbreaks of damaging behavior such as tail biting as a possible result. The hypothesis presented here is that the effects of several known risk factors for tail biting are mediated by pro-inflammatory cytokines, proteins produced by the immune system, and their effect on neurotransmitter systems. We describe the background for and implications of this hypothesis.Peer reviewe

    Catastrophizing mediates the relationship between the personal belief in a just world and pain outcomes among chronic pain support group attendees

    Get PDF
    Health-related research suggests the belief in a just world can act as a personal resource that protects against the adverse effects of pain and illness. However, currently, little is known about how this belief, particularly in relation to one’s own life, might influence pain. Consistent with the suggestions of previous research, the present study undertook a secondary data analysis to investigate pain catastrophizing as a mediator of the relationship between the personal just world belief and chronic pain outcomes in a sample of chronic pain support group attendees. Partially supporting the hypotheses, catastrophizing was negatively correlated with the personal just world belief and mediated the relationship between this belief and pain and disability, but not distress. Suggestions for future research and intervention development are made
    • …
    corecore