1,754 research outputs found

    The Human Gene Mutation Database: 2008 update

    Get PDF
    The Human Gene Mutation Database (HGMD®) is a comprehensive core collection of germline mutations in nuclear genes that underlie or are associated with human inherited disease. Here, we summarize the history of the database and its current resources. By December 2008, the database contained over 85,000 different lesions detected in 3,253 different genes, with new entries currently accumulating at a rate exceeding 9,000 per annum. Although originally established for the scientific study of mutational mechanisms in human genes, HGMD has since acquired a much broader utility for researchers, physicians, clinicians and genetic counselors as well as for companies specializing in biopharmaceuticals, bioinformatics and personalized genomics. HGMD was first made publicly available in April 1996, and a collaboration was initiated in 2006 between HGMD and BIOBASE GmbH. This cooperative agreement covers the exclusive worldwide marketing of the most up-to-date (subscription) version of HGMD, HGMD Professional, to academic, clinical and commercial users

    The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies

    Get PDF
    The Human Gene Mutation Database (HGMD®) constitutes a comprehensive collection of published germline mutations in nuclear genes that underlie, or are closely associated with human inherited disease. At the time of writing (March 2017), the database contained in excess of 203,000 different gene lesions identified in over 8000 genes manually curated from over 2600 journals. With new mutation entries currently accumulating at a rate exceeding 17,000 per annum, HGMD represents de facto the central unified gene/disease-oriented repository of heritable mutations causing human genetic disease used worldwide by researchers, clinicians, diagnostic laboratories and genetic counsellors, and is an essential tool for the annotation of next-generation sequencing data. The public version of HGMD (http://www.hgmd.org) is freely available to registered users from academic institutions and non-profit organisations whilst the subscription version (HGMD Professional) is available to academic, clinical and commercial users under license via QIAGEN Inc

    The Human Gene Mutation Database (HGMD®): optimizing its use in a clinical diagnostic or research setting

    Get PDF
    The Human Gene Mutation Database (HGMD®) constitutes a comprehensive collection of published germline mutations in nuclear genes that are thought to underlie, or are closely associated with human inherited disease. At the time of writing (June 2020), the database contains in excess of 289,000 different gene lesions identified in over 11,100 genes manually curated from 72,987 articles published in over 3100 peer-reviewed journals. There are primarily two main groups of users who utilise HGMD on a regular basis; research scientists and clinical diagnosticians. This review aims to highlight how to make the most out of HGMD data in each setting

    Distinct sequence features underlie microdeletions and gross deletions in the human genome

    Get PDF
    Microdeletions and gross deletions are important causes (~20%) of human inherited disease and their genomic locations are strongly influenced by the local DNA sequence environment. This notwithstanding, no study has systematically examined their underlying generative mechanisms. Here, we obtained 42,098 pathogenic microdeletions and gross deletions from the Human Gene Mutation Database (HGMD) that together form a continuum of germline deletions ranging in size from 1bp to 28,394,429bp. We analyzed the DNA sequence within 1-kb of the breakpoint junctions and found that the frequencies of non-B DNA-forming repeats, GC-content, and the presence of seven of 78 specific sequence motifs in the vicinity of pathogenic deletions correlated with deletion length for deletions of length ≤30 bp. Further, we found that the presence of DR, GQ and STR repeats is important for the formation of longer deletions (>30 bp) but not for the formation of shorter deletions (≤30 bp) whilst significantly (Chi-square test P-value30 bp). We provide evidence to support a functional distinction between microdeletions and gross deletions. Finally, we propose that a deletion length cut-off of 25-30bp may serve as an objective means to functionally distinguish microdeletions from gross deletions

    Slower is not always better: Response-time evidence clarifies the limited role of miserly information processing in the Cognitive Reflection Test

    Get PDF
    We report a study examining the role of `cognitive miserliness' as a determinant of poor performance on the standard three-item Cognitive Reflection Test (CRT). The cognitive miserliness hypothesis proposes that people often respond incorrectly on CRT items because of an unwillingness to go beyond default, heuristic processing and invest time and effort in analytic, reflective processing. Our analysis (N = 391) focused on people's response times to CRT items to determine whether predicted associations are evident between miserly thinking and the generation of incorrect, intuitive answers. Evidence indicated only a weak correlation between CRT response times and accuracy. Item-level analyses also failed to demonstrate predicted response time differences between correct analytic and incorrect intuitive answers for two of the three CRT items. We question whether participants who give incorrect intuitive answers on the CRT can legitimately be termed cognitive misers and whether the three CRT items measure the same general construct

    The functional spectrum of low-frequency coding variation

    Get PDF
    Background Rare coding variants constitute an important class of human genetic variation, but are underrepresented in current databases that are based on small population samples. Recent studies show that variants altering amino acid sequence and protein function are enriched at low variant allele frequency, 2 to 5%, but because of insufficient sample size it is not clear if the same trend holds for rare variants below 1% allele frequency. Results The 1000 Genomes Exon Pilot Project has collected deep-coverage exon-capture data in roughly 1,000 human genes, for nearly 700 samples. Although medical whole-exome projects are currently afoot, this is still the deepest reported sampling of a large number of human genes with next-generation technologies. According to the goals of the 1000 Genomes Project, we created effective informatics pipelines to process and analyze the data, and discovered 12,758 exonic SNPs, 70% of them novel, and 74% below 1% allele frequency in the seven population samples we examined. Our analysis confirms that coding variants below 1% allele frequency show increased population-specificity and are enriched for functional variants. Conclusions This study represents a large step toward detecting and interpreting low frequency coding variation, clearly lays out technical steps for effective analysis of DNA capture data, and articulates functional and population properties of this important class of genetic variatio

    DNA methylation predicts age and provides insight into exceptional longevity of bats

    Get PDF
    This work was supported by a Paul G. Allen Frontiers Group grant to S.H., the University of Maryland, College of Computer, Mathematical and Natural Sciences to G.S.W., an Irish Research Council Consolidator Laureate Award to E.C.T., a UKRI Future Leaders Fellowship (MR/T021985/1) to S.C.V. and a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada to P.A.F. S.C.V. and P.D. were supported by a Max Planck Research Group awarded to S.C.V. by the Max Planck Gesellschaft, and S.C.V. and E.Z.L. were supported by a Human Frontiers Science Program Grant (RGP0058/2016) awarded to S.C.V. L.J.G. was supported by an NSERC PGS-D scholarship.Exceptionally long-lived species, including many bats, rarely show overt signs of aging, making it difficult to determine why species differ in lifespan. Here, we use DNA methylation (DNAm) profiles from 712 known-age bats, representing 26 species, to identify epigenetic changes associated with age and longevity. We demonstrate that DNAm accurately predicts chronological age. Across species, longevity is negatively associated with the rate of DNAm change at age-associated sites. Furthermore, analysis of several bat genomes reveals that hypermethylated age- and longevity-associated sites are disproportionately located in promoter regions of key transcription factors (TF) and enriched for histone and chromatin features associated with transcriptional regulation. Predicted TF binding site motifs and enrichment analyses indicate that age-related methylation change is influenced by developmental processes, while longevity-related DNAm change is associated with innate immunity or tumorigenesis genes, suggesting that bat longevity results from augmented immune response and cancer suppression.Publisher PDFPeer reviewe

    Guanine Holes Are Prominent Targets for Mutation in Cancer and Inherited Disease

    Get PDF
    Albino Bacolla, Guliang Wang, Aklank Jain, Karen M. Vasquez, Division of Pharmacology and Toxicology, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas, United States of AmericaAlbino Bacolla, Nuri A. Temiz, Ming Yi, Joseph Ivanic, Regina Z. Cer, Duncan E. Donohue, Uma S. Mudunuri, Natalia Volfovsky, Brian T. Luke, Robert M., Stephens, Jack R. Collins, Advanced Biomedical Computing Center, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of AmericaEdward V. Ball, David N. Cooper, Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United KingdomSingle base substitutions constitute the most frequent type of human gene mutation and are a leading cause of cancer and inherited disease. These alterations occur non-randomly in DNA, being strongly influenced by the local nucleotide sequence context. However, the molecular mechanisms underlying such sequence context-dependent mutagenesis are not fully understood. Using bioinformatics, computational and molecular modeling analyses, we have determined the frequencies of mutation at G•C bp in the context of all 64 5′-NGNN-3′ motifs that contain the mutation at the second position. Twenty-four datasets were employed, comprising >530,000 somatic single base substitutions from 21 cancer genomes, >77,000 germline single-base substitutions causing or associated with human inherited disease and 16.7 million benign germline single-nucleotide variants. In several cancer types, the number of mutated motifs correlated both with the free energies of base stacking and the energies required for abstracting an electron from the target guanines (ionization potentials). Similar correlations were also evident for the pathological missense and nonsense germline mutations, but only when the target guanines were located on the non-transcribed DNA strand. Likewise, pathogenic splicing mutations predominantly affected positions in which a purine was located on the non-transcribed DNA strand. Novel candidate driver mutations and tissue-specific mutational patterns were also identified in the cancer datasets. We conclude that electron transfer reactions within the DNA molecule contribute to sequence context-dependent mutagenesis, involving both somatic driver and passenger mutations in cancer, as well as germline alterations causing or associated with inherited disease.This work was supported by grants from the NIH (CA097175 and CA093729) to KMV, NCI/NIH contract HHSN261200800001E to AB and the Frederick National Laboratory for Cancer Research, and CBIIT/caBIG ISRCE yellow task #09-260 to the Frederick National Laboratory for Cancer Research. DNC and EVB received financial support from BIOBASE GmbH through a license agreement (for HGMD) with Cardiff University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.PharmacyEmail: [email protected]
    corecore