2,774 research outputs found

    Economic and psychological approaches to risk-bearing : theory and experimental evidence / BEBR No. 603

    Get PDF
    Title page includes summary.Includes bibliographical references (p. 44-45)

    Colony Breeding Structure of Reticulitermes (Isoptera: Rhinotermitidae) in Northwest Arkansas

    Get PDF
    Termites, as social insects, have a complicated life cycle in which the colony breeding structure, that is the number of and origin of reproductives in a colony, can vary in relation to age and environmental factors. In this study, we used genetic methods to characterize the breeding structure of three species of Reticulitermes from three sites in northwest Arkansas and compared two habitats: undeveloped, forested sites and developed, agricultural sites. We found 57.1% of R. flavipes (Kollar) in northwest Arkansas (n = 28) were simple families, 39.3% were extended families and 3.6% were mixed families. Similarly, for R. hageni Banks (n = 23), we found 58.3% simple families, 33.3% extended families, and 8.3% mixed families. All of the R. virginicus (Banks) samples (n = 5) were simple families. For R. flavipes and R. hageni, the percentage of extended families is intermediate to southeastern and northern USA populations, corresponding to the intermediate seasonality and climate in Arkansas. The level of inbreeding in Arkansas, estimated via FIT, was relatively high and similar to northern populations of Reticulitermes. There were significantly more extended family colonies at the developed site compared to the two undeveloped sites which contained more simple family colonies. This difference may occur as a strategy to cope with sparse resources in urban environments or as a consequence of different abiotic factors

    Stochastic Background Search Correlating ALLEGRO with LIGO Engineering Data

    Full text link
    We describe the role of correlation measurements between the LIGO interferometer in Livingston, LA, and the ALLEGRO resonant bar detector in Baton Rouge, LA, in searches for a stochastic background of gravitational waves. Such measurements provide a valuable complement to correlations between interferometers at the two LIGO sites, since they are sensitive in a different, higher, frequency band. Additionally, the variable orientation of the ALLEGRO detector provides a means to distinguish gravitational wave correlations from correlated environmental noise. We describe the analysis underway to set a limit on the strength of a stochastic background at frequencies near 900 Hz using ALLEGRO data and data from LIGO's E7 Engineering Run.Comment: 8 pages, 2 encapsulated PostScript figures, uses IOP class files, submitted to the proceedings of the 7th Gravitational Wave Data Analysis Workshop (which will be published in Classical and Quantum Gravity

    Panel No. 3: Contemporary and Critical Views of Arbitration

    Get PDF
    Given the pre-emptive effect of the FAA, do state laws of arbitration have any but a subservient function? How do regulatory agencies assess and can their regulations control the FAA? The panelists will explore controversies that are currently taking place in reinsurance arbitration; whether the Supreme Court\u27s invitation in Hall Street Associates to employ different standards of review evidences a skepticism of arbitration that threatens to undercut the uniform edifice of arbitration that the Supreme Court has, to date, constructed; and, finally, whether the New York arbitration convention support or dissent from the substantive rules of the FAA

    Panel No. 3: Contemporary and Critical Views of Arbitration

    Get PDF
    Given the pre-emptive effect of the FAA, do state laws of arbitration have any but a subservient function? How do regulatory agencies assess and can their regulations control the FAA? The panelists will explore controversies that are currently taking place in reinsurance arbitration; whether the Supreme Court\u27s invitation in Hall Street Associates to employ different standards of review evidences a skepticism of arbitration that threatens to undercut the uniform edifice of arbitration that the Supreme Court has, to date, constructed; and, finally, whether the New York arbitration convention support or dissent from the substantive rules of the FAA

    Evolution of 3D Boson Stars with Waveform Extraction

    Full text link
    Numerical results from a study of boson stars under nonspherical perturbations using a fully general relativistic 3D code are presented together with the analysis of emitted gravitational radiation. We have constructed a simulation code suitable for the study of scalar fields in space-times of general symmetry by bringing together components for addressing the initial value problem, the full evolution system and the detection and analysis of gravitational waves. Within a series of numerical simulations, we explicitly extract the Zerilli and Newman-Penrose scalar Κ4\Psi_4 gravitational waveforms when the stars are subjected to different types of perturbations. Boson star systems have rapidly decaying nonradial quasinormal modes and thus the complete gravitational waveform could be extracted for all configurations studied. The gravitational waves emitted from stable, critical, and unstable boson star configurations are analyzed and the numerically observed quasinormal mode frequencies are compared with known linear perturbation results. The superposition of the high frequency nonspherical modes on the lower frequency spherical modes was observed in the metric oscillations when perturbations with radial and nonradial components were applied. The collapse of unstable boson stars to black holes was simulated. The apparent horizons were observed to be slightly nonspherical when initially detected and became spherical as the system evolved. The application of nonradial perturbations proportional to spherical harmonics is observed not to affect the collapse time. An unstable star subjected to a large perturbation was observed to migrate to a stable configuration.Comment: 26 pages, 12 figure

    Dynamic Site Periods for the Jackson Purchase Region of Western Kentucky

    Get PDF
    Bridges, overpasses, and other engineered structures in the Jackson Purchase region of Western Kentucky are, of necessity, built on a thick column of loose to semi-consolidated sediments. Because these sediments tend to amplify seismically induced ground motions at preferred periods, structures with natural periods close to the preferred periods of amplification of the ground motions are particularly vulnerable to damages during an earthquake because of in-phase resonance. For this report, conventional seismic refraction and reflection techniques were used to determine the shearwave velocities of the more poorly consolidated, near-surface sediments for a matrix of sites in the region. Conventional seismic P-wave reflections along with existing drill hole and seismic reflection data in the region were then used to determine the depth to the top of the bedrock at the sites investigated. These data were used in SHAKE91 to calculate the fundamental period of the ground motion at the sites. This period, identified in the study as the dynamic site period, is the period at which ground motions in the sedimentary column are most apt to be amplified as a result of a seismic shear wave propagating from the top of the bedrock to the surface. Based on the results in this report, it is recommended that bridges, overpasses, and other engineered structures built in the region be designed so that their natural periods do not coincide with the fundamental period of the sedimentary column, thereby avoiding damage during an earthquake as a result of in-phase resonance

    A cationic rhodium(I) N-heterocyclic carbene complex isolated as an aqua adduct

    Get PDF
    The title complex, aqua­[1,3-bis­(2,6-diiso­propyl­phen­yl)imid­az­ol-2-yl­idene](η4-cyclo­octa-1,5-diene)rhodium(I) tetra­fluor­ido­borate, [Rh(C8H12)(C27H36N2)(H2O)]BF4, exihibits a square-planar geometry around the Rh(I) atom, formed by a bidentate cyclo­octa-1,5-diene (cod) ligand, an N-heterocylcic carbene and an aqua ligand. The complex is cationic and a BF4 − anion balances the charge. The structure exists as a hydrogen-bonded dimer in the solid state, formed via inter­actions between the aqua ligand H atoms and the BF4 − F atoms
    • 

    corecore