626 research outputs found

    Signaling local non-credibility in an automatic segmentation pipeline

    Get PDF
    The advancing technology for automatic segmentation of medical images should be accompanied by techniques to inform the user of the local credibility of results. To the extent that this technology produces clinically acceptable segmentations for a significant fraction of cases, there is a risk that the clinician will assume every result is acceptable. In the less frequent case where segmentation fails, we are concerned that unless the user is alerted by the computer, she would still put the result to clinical use. By alerting the user to the location of a likely segmentation failure, we allow her to apply limited validation and editing resources where they are most needed. We propose an automated method to signal suspected non-credible regions of the segmentation, triggered by statistical outliers of the local image match function. We apply this test to m-rep segmentations of the bladder and prostate in CT images using a local image match computed by PCA on regional intensity quantile functions. We validate these results by correlating the non-credible regions with regions that have surface distance greater than 5.5mm to a reference segmentation for the bladder. A 6mm surface distance was used to validate the prostate results. Varying the outlier threshold level produced a receiver operating characteristic with area under the curve of 0.89 for the bladder and 0.92 for the prostate. Based on this preliminary result, our method has been able to predict local segmentation failures and shows potential for validation in an automatic segmentation pipeline

    Drugs and Criminal Responsibility

    Get PDF
    This Special Project has carried out three broad purposes.First, it has synthesized and organized materials concerning drugs and criminal responsibility into a useful guide for legal practitioners and others interested in the problems of the drug dependent defendant. Second, it has identified serious analytical flaws in many of the defenses available to the criminal defendant. Finally,it has responded to these deficiencies with proposals intended to protect not only the legal rights of the drug dependent defendant but also the rights of society pertaining to criminal justice. While these societal interests include the swift imposition of criminal penalties when warranted, they should not be allowed to diminish the concomitant rights of the criminal defendant. In fact, societal rights would be better served by a reexamination and reinterpretation of several traditional legal theories concerning drugs and criminal defendants. A recognition by courts and legislatures of the existing analytical flaws should lead to the development of more equitable theories and a search for alternative forms of treatment and rehabilitation for the drug dependent defendant. Rather than hiding behind the guise of legal history and moral judgment, courts and legislatures should respond to illogical and insufficient theories that fail to deal with the drug dependent defendant in an equitable and just manner

    Comparison of NTF Experimental Data with CFD Predictions from the Third AIAA CFD Drag Prediction Workshop

    Get PDF
    Recently acquired experimental data for the DLR-F6 wing-body transonic transport con figuration from the National Transonic Facility (NTF) are compared with the database of computational fluid dynamics (CFD) predictions generated for the Third AIAA CFD Drag Prediction Workshop (DPW-III). The NTF data were collected after the DPW-III, which was conducted with blind test cases. These data include both absolute drag levels and increments associated with this wing-body geometry. The baseline DLR-F6 wing-body geometry is also augmented with a side-of-body fairing which eliminates the flow separation in this juncture region. A comparison between computed and experimentally observed sizes of the side-of-body flow-separation bubble is included. The CFD results for the drag polars and separation bubble sizes are computed on grids which represent current engineering best practices for drag predictions. In addition to these data, a more rigorous attempt to predict absolute drag at the design point is provided. Here, a series of three grid densities are utilized to establish an asymptotic trend of computed drag with respect to grid convergence. This trend is then extrapolated to estimate a grid-converged absolute drag level

    Impacts of Climate Change on indirect human exposure to pathogens and chemicals from agriculture

    Get PDF
    Objective: Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. Data sources: In this review, we used expert input and considered literature on climate change ; health effects resulting from exposure to pathogens and chemicals arising from agriculture ; inputs of chemicals and pathogens to agricultural systems ; and human exposure pathways for pathogens and chemicals in agricultural systems. Data synthesis: We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment ; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems ; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Conclusions: Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes

    Summary of the Fourth AIAA CFD Drag Prediction Workshop

    Get PDF
    Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation

    The magnetic susceptibility of disordered non-diffusive mesoscopic systems

    Full text link
    Disorder-induced spectral correlations of mesoscopic quantum systems in the non-diffusive regime and their effect on the magnetic susceptibility are studied. We perform impurity averaging for non-translational invariant systems by combining a diagrammatic perturbative approach with semiclassical techniques. This allows us to study the entire range from clean to diffusive systems. As an application we consider the magnetic response of non-interacting electrons in microstructures in the presence of weak disorder. We show that in the ballistic case (elastic mean free path â„“\ell larger than the system size) there exist two distinct regimes of behaviour depending on the relative magnitudes of â„“\ell and an inelastic scattering length LÏ•L_{\phi}. We present numerical results for square billiards and derive approximate analytical results for generic chaotic geometries. The magnetic field dependence and LÏ•L_{\phi} dependence of the disorder-induced susceptibility is qualitatively similar in both types of geometry.Comment: 11 pages, 7 eps figures, to be published in Phys. Rev.

    Depth-resolved measurement of the Meissner screening profile in a niobium thin film from spin-lattice relaxation of the implanted β\beta-emitter 8^{8}Li

    Full text link
    We report measurements of the Meissner screening profile in a Nb(300 nm)/Al2_{2}O3_{3} thin film using 8^{8}Li β\beta-detected nuclear magnetic resonance (β\beta-NMR). The NMR probe 8^{8}Li was ion-implanted into the Nb film at energies ≤\leq 20 keV, corresponding to mean stopping depths comparable to Nb's magnetic penetration depth λ\lambda. 8^{8}Li's strong dipole-dipole coupling with the host 93^{93}Nb nuclei provided a "cross-relaxation" channel that dominated in low magnetic fields, which conferred indirect sensitivity to the local magnetic field via the spin-lattice relaxation (SLR) rate 1/T11/T_{1}. From a fit of the 1/T11/T_{1} data to a model accounting for its dependence on temperature, magnetic field, and 8^{8}Li+^{+} implantation energy, we obtained a magnetic penetration depth λ0\lambda_{0} = 51.5(22) nm, consistent with a relatively short carrier mean-free-path ℓ\ell = 18.7(29) nm typical of similarly prepared Nb films. The results presented here constitute an important step towards using 8^{8}Li β\beta-NMR to characterize bulk Nb samples with engineered surfaces, which are often used in the fabrication of particle accelerators.Comment: 16 pages, 4 figure

    Ion-Implanted 8^8Li Nuclear Magnetic Resonance in Highly Oriented Pyrolytic Graphite

    Full text link
    We report β\beta-detected nuclear magnetic resonance of ultra-dilute 8^{8}Li+^{+} implanted in highly oriented pyrolytic graphite (HOPG). The absence of motional narrowing and diffusional spin-lattice relaxation implies Li+^+ is not appreciably mobile up to 400 K, in sharp contrast to the highly lithiated stage compounds. However, the relaxation is remarkably fast and persists down to cryogenic temperatures. Ruling out extrinsic paramagnetic impurities and intrinsic ferromagnetism, we conclude the relaxation is due to paramagnetic centers correlated with implantation. While the resulting effects are not consistent with a Kondo impurity, they also differ from free paramagnetic centers, and we suggest that a resonant scattering approach may account for much of the observed phenomenology

    Nuclear magnetic resonance of ion implanted 8^8Li in ZnO

    Full text link
    We report on the stability and magnetic state of ion implanted 8^8Li in single crystals of the semiconductor ZnO using β\beta-detected nuclear magnetic resonance. At ultradilute concentrations, the spectra reveal distinct Li sites from 7.6 to 400 K. Ionized shallow donor interstitial Li is stable across the entire temperature range, confirming its ability to self-compensate the acceptor character of its (Zn) substitutional counterpart. Above 300 K, spin-lattice relaxation indicates the onset of correlated local motion of interacting defects, and the spectra show a site change transition from disordered configurations to substitutional. Like the interstitial, the substitutional shows no resolved hyperfine splitting, indicating it is also fully ionized above 210 K. The electric field gradient at the interstitial 8^8Li exhibits substantial temperature dependence with a power law typical of non-cubic metals.Comment: 15 pages and 11 figure
    • …
    corecore