3,201 research outputs found

    Synergism of Saturn, Enceladus and Titan and Formation of HCNO Prebiotic Molecules

    Get PDF
    Saturn as a system has two very exotic moons Titan and Enceladus. Titan, taking in energy from Saturn's magnetosphere, solar UV irradiation, and cosmic rays, can make HCN based molecules as discussed in earlier paper by Raulin and Owen. Space radiation effects at both moons, and as coupled by the Saturn magnetosphere, could cause an unexpected series of events potentially leading to prebiotic chemical evolution at Titan with HCNO from magnetospheric oxygen as the new ingredient. The "Old Faithful" model suggests that Enceladus, highly irradiated by Saturn magnetospheric electrons and thus having a source of chemical energy from radiolytic gas production, has episodic ejections of water vapor, carbon dioxide, and various hydrocarbons into Saturn's magnetosphere. The hydrocarbons do not survive transport through the plasma environment, but oxygen ions from Enceladus water molecules become the dominant ion species in the outer magnetosphere. At Titan, Cassini discovered that 1) keV oxygen ions, evidently from Enceladus, are bombarding Titan's upper atmosphere and 2) heavy positive and negative ions exist in significant abundances within Titan's upper atmosphere. Initial models of heavy ion formation in Titan's upper atmosphere invoked polymerization of aromatics such as benzenes and their radicals to make polycyclic aromatic hydrocarbons (PAH) , while a more recent model by Sittler et al., has raised the possibility of carbon chains forming from the polymerization of acetylene and its radicals to make fullerenes. Laboratory measurements indicate that fullerenes, which are hollow carbon shells, can trap keV oxygen ions. Clustering of the fullerenes with aerosol mixtures from PAHs and the dominant nitrogen molecules could form larger aerosols enriched in trapped oxygen. Aerosol precipitation could then convey these chemically complex structures deeper into the atmosphere and to the moon surface. Ionizing solar UV, magnetospheric electron, and galactic cosmic ray irradiation would provide further energy for processing into more complex organic forms. Further ionizing irradiation from cosmic rays deep in the atmosphere "tho lin" molecules are produced with all the molecular components present from which prebiotic organic molecules can form. This synergy of Saturn system, exogenic irradiation, and molecular processes provides a potential pathway for accumulation of prebiotic chemistry on the surface of Titan. Since fullerenes are also thought to exist in interstellar space, similar processes may also occur there to seed molecular clouds with prebiotic chemical species. We will also discuss possible future laboratory experiments that could be done to investigate fullerene formation at Titan and the trapping of oxygen in fullerenes

    Synergism of Saturn, Enceladus and Titan and Formation of HCNO Exobiological Molecules

    Get PDF
    Saturn as a system has two very exotic moons Titan and Enceladus. Titan with energy input from Saturn's magnetosphere, solar UV irradiation, and cosmic rays can make HCN based molecules as discussed in earlier paper by [1]. Space radiation effects at both moons, and as coupled by the Saturn magnetosphere could cause an unexpected series of events leading to the evolution of biological models at Titan composed of HCNO with oxygen as the new ingredient. The "Old Faithful" model by [2] suggests that Enceladus, highly irradiated by Saturn magnetospheric electrons, has episodic ejections of water vapor driven by radiolytic oxidation gas products into Saturn's magnetosphere. At Titan Cassini discovered 1) that keV oxygen ions, evidently from Enceladus, are bombarding Titan's upper atmosphere [3] and 2) the discovery of heavy positive and negative ions within Titan's upper atmosphere [4]. Initial models of heavy ion formation in Titan's upper atmosphere invoked polymerization of aromatics such as Benzenes and their radicals to make PAHs [5], while a more recent model by [6] has raised the possibility of carbon chains forming from the polymerization of acetylene and its radicals to eventually make fullerenes. Laboratory measurements indicate that fullerenes, which are hollow carbon shells, can trap the keV oxygen and with the clustering of fullerenes and possible mixture with PAHs, some with nitrogen molecules, can make the larger aerosols with oxygen within them. Then with further ionizing irradiation from cosmic rays deep in the atmosphere "tholin" molecules are produced with all the molecular components present from which organic molecules can form. Among the molecular components are amino acids, the fundamental building blocks of life as we know it. This process maybe a common chemical pathway, both at the system level and at the molecular level, to form prebiotic and perhaps even biotic molecules. Such processes can be occurring throughout our universe, such as molecular clouds in the ISM

    Prismatine: Revalidation for Boron-Rich Compositions in the Kornerupine Group

    Get PDF
    Kornerupine and prismatine were introduced independently by Lorenzen in 1884 (but published in 1886 and 1893) and by Sauer in 1886, respectively. Ussing (1889) showed that the two minerals were sufficiently close crystallographically and chemically to be regarded as one species. However, recent analyses of boron using the ion microprobe and crystal structure refinement, indicate that the boron content of one tetrahedral site in kornerupine ranges from 0 to 1. Kornerupine and prismatine, from their respective type localities of Fiskenaesset, Greenland and Waldheim, Germany, are distinct minerals, members of an isomorphic series differing in boron content. For this reason, we re-introduce Sauer\u27s name prismatine for kornerupines with B \u3e 0.5 atoms per formula unit (p.f.u.) of 22(O,OH,F), and restrict the name kornerupine sensu stricto to kornerupines with B \u3c 0.5 p.f.u. Kornerupine sensu lato is an appropriate group name for kornerupine of unknown boron content. Kornerupine sensu stricto and prismatine from the type localities differ also in Fe2+/Mg ratio, Si - (Mg + Fe2+ + Mn) content, Al content, F content, colour, density, cell parameters, and paragenesis. Both minerals formed under granulite-facies conditions with sapphirine and phlogopite, but kornerupine sensu stricto is associated with anorthite and homblende or gedrite, whereas prismatine is found with oligoclase (An9-13), sillimanite, garnet, and/or tourmaline. Occurrences at other localities suggest that increasing boron content extends the stability range of prismatine relative to that of kornerupine sensu stricto

    Міжнародна наукова конференція «Українська мова серед інших слов'янських: етнологічні та граматичні параметри»

    Get PDF
    5–6 листопада 2009 року у Кривому Розі відбулася Міжнародна наукова конференція «Українська мова серед інших слов’янських: етнологічні та граматичні параметри», присвячена світлій пам’яті видатного українського мовознавця Олександра Васильовича Царука

    Radiolytic Gas-Driven Cryovolcanism in the Outer Solar System

    Get PDF
    Water ices in surface crusts of Europa, Enceladus, Saturn's main rings, and Kuiper Belt Objects can become heavily oxidized from radiolytic chemical alteration of near-surface water ice by space environment irradiation. Oxidant accumulations and gas production are manifested in part through observed H2O2 on Europa. tentatively also on Enceladus, and found elsewhere in gaseous or condensed phases at moons and rings of Jupiter and Saturn. On subsequent chemical contact in sub-surface environments with significant concentrations of primordially abundant reductants such as NH3 and CH4, oxidants of radiolytic origin can react exothermically to power gas-driven cryovolcanism. The gas-piston effect enormously amplifies the mass flow output in the case of gas formation at basal thermal margins of incompressible fluid reservoirs. Surface irradiation, H2O2 production, NH3 oxidation, and resultant heat, gas, and gas-driven mass flow rates are computed in the fluid reservoir case for selected bodies. At Enceladus the oxidant power inputs are comparable to limits on nonthermal kinetic power for the south polar plumes. Total heat output and plume gas abundance may be accounted for at Enceladus if plume activity is cyclic in high and low "Old Faithful" phases, so that oxidants can accumulate during low activity phases. Interior upwelling of primordially abundant NH3 and CH4 hydrates is assumed to resupply the reductant fuels. Much lower irradiation fluxes on Kuiper Belt Objects require correspondingly larger times for accumulation of oxidants to produce comparable resurfacing, but brightness and surface composition of some objects suggest that such activity may be ongoing

    Estimating regional evapotranspiration from remotely sensed data by surface energy balance models

    Get PDF
    Spatial and temporal variations of surface radiative temperatures of the burned and unburned areas of the Konza tallgrass prairie were studied. The role of management practices, topographic conditions and the uncertainties associated with in situ or airborne surface temperature measurements were assessed. Evaluation of diurnal and seasonal spectral characteristics of the burned and unburned areas of the prairie was also made. This was accomplished based on the analysis of measured spectral reflectance of the grass canopies under field conditions, and modelling their spectral behavior using a one dimensional radiative transfer model

    The Interaction of the Solar Wind with Solar Probe Plus - 3D Hybrid Simulation. Report 2: The Study for the Distance 9.5Rs

    Get PDF
    Our paper is a 2.5D and 3D numerical plasma models of the interaction of the solar wind (SW) with the Solar Probe Plus spacecraft (SPPSC). These results should be interpreted as a basic plasma model for which the derived SW interaction with spacecraft (SC) could have consequences for both plasma wave and electron plasma measurements on board SC in the inner heliosphere. We observe an excitation of the low frequency Alfven and whistler type wave directed by the magnetic field with an amplitude of the electromagnetic field oscillation about of (0.015-0.06) V/m. The compression waves and the jumps in an electric field with an amplitude of about 1.5 V/m and (12-18) V/m were also observed. The observed strong electromagnetic perturbations may be a crucial point in the electromagnetic measurements, which were planned in future Solar Probe Plus mission

    The Interaction of the Solar Wind with Solar Probe Plus - 3D Hybrid Simulation

    Get PDF
    Our report devotes a 3D numerical hybrid model of the interaction of the solar wind with the Solar Probe spacecraft. The SPP model includes 3 main parts, namely, a non-conducting heat shield, a support system, and cylindrical section or spacecraft bus that contains the particle analysis devices and antenna. One observes an excitation of the low frequency Alfven and whistler type wave directed by the magnetic field with an amplitude of about (0.06-0.6) V/m. The compression waves and the jumps in an electric field with an amplitude of about (0.15-0.7) V/m were also observed. The wave amplitudes are comparable to or greater than previously estimated max wave amplitudes that SPP is expected to measure. The results of our hybrid simulation will be useful for understanding the plasma environment near the SPP spacecraft at the distance 4.5 Rs. Future simulation will take into account the charging of the spacecraft, the charge separation effects, an outgassing from heat shield, a photoionization and an electron impact ionization effects near the spacecraft

    Lunar Solar Origins Exploration (LunaSOX)

    Get PDF
    The Moon offers a unique vantage point from which to investigate the Sun and its interaction via the solar wind magnetic fields, plasma, and energetic particles with the geospace system including the Moon itself. The lunar surface and exosphere provide in part a record of solar coronal plasma material input and resultant space weathering over billions of years. The structure and dynamics of solar wind interactions with the Moon provide an accessible near-Earth laboratory environment for study of general solar wind interactions with the vast multitude of airless asteroidal bodies of the inner solar system. Spacecraft in lunar orbit have the often simultaneous opportunity, except when in the Earth's magnetosphere, to make in-situ compositional measurements of the solar wind plasma and to carry out remote observations from the Moon of the solar corona, potentially enabled by lunar limb occultation of the solar disk. The LunaSOX project at NASA Goddard Space Flight Center is addressing these heliophysical science objectives from and of the Moon with support from NASA's Lunar Advanced Science and Exploration Research (LASER) program: (1) specify history of solar wind parameters at and sunward of the Moon through enhanced access (http://lunasox.gsfc.nasa.gov/) to legacy and operational mission data products from the Apollo era to the present, (2) model field and plasma interactions with the lunar surface, exosphere, and wake, as constrained by the available data, through hybrid kinetic code simulations, and (3) advance mission concepts for heliophysics from and of the Moon

    Dynamic lactate indices as predictors of outcome in critically ill patients

    Get PDF
    INTRODUCTION: Dynamic changes in lactate concentrations in the critically ill may predict patient outcome more accurately than static indices. We aimed to compare the predictive value of dynamic indices of lactatemia in the first 24 hours of intensive care unit (ICU) admission with the value of more commonly used static indices. METHODS: This was a retrospective observational study of a prospectively obtained intensive care database of 5,041 consecutive critically ill patients from four Australian university hospitals. We assessed the relationship between dynamic lactate values collected in the first 24 hours of ICU admission and both ICU and hospital mortality. RESULTS: We obtained 36,673 lactate measurements in 5,041 patients in the first 24 hours of ICU admission. Both the time weighted average lactate (LACTW₂₄) and the change in lactate (LACΔ₂₄) over the first 24 hours were independently predictive of hospital mortality with both relationships appearing to be linear in nature. For every one unit increase in LACTW₂₄ and LACΔ₂₄ the risk of hospital death increased by 37% (OR 1.37, 1.29 to 1.45; P < 0.0001) and by 15% (OR 1.15, 1.10 to 1.20; P < 0.0001) respectively. Such dynamic indices, when combined with Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, improved overall outcome prediction (P < 0.0001) achieving almost 90% accuracy. When all lactate measures in the first 24 hours were considered, the combination of LACTW₂₄ and LACΔ₂₄ significantly outperformed (P < 0.0001) static indices of lactate concentration, such as admission lactate, maximum lactate and minimum lactate. CONCLUSIONS: In the first 24 hours following ICU admission, dynamic indices of hyperlactatemia have significant independent predictive value, improve the performance of illness severity score-based outcome predictions and are superior to simple static indices of lactate concentration
    corecore