90 research outputs found

    Direct Air Capture and Integrated Conversion of Carbon Dioxide into Cyclic Carbonates with Basic Organic Salts

    Get PDF
    Direct air capture and integrated conversion is a very attractive strategy to reduce CO2 concentration in the atmosphere. However, the existing capturing processes are technologically challenging due to the costs of the processes and the low concentration of CO2. The efficient valorization of the CO2 captured could help overcome many techno-economic limitations. Here, we present a novel economical methodology for direct air capture and conversion that is able to efficiently convert CO2 from the air into cyclic carbonates. The new approach employs commercially available basic ionic liquids, works without the need for sophisticated and expensive co-catalysts or sorbents and under mild reaction conditions. The CO2 from atmospheric air was efficiently captured by IL solution (0.98 molCO2/molIL) and, subsequently, completely converted into cyclic carbonates using epoxides or halohydrins potentially derived from biomass as substrates. A mechanism of conversion was evaluated, which helped to identify relevant reaction intermediates based on halohydrins, and consequently, a 100% selectivity was obtained using the new methodology.Funding for open access charge: CRUE-Universitat Jaume IThis work has been partially supported by University Jaume I (UJI-B2019-40 and UJI-B2020-44) and RTI2018-098233-B-C22 y C21, PID2021-124695OB-C22 (FEDER//Ministerio de Ciencia e Innovación─Agencia Estatal de Investigación). M.Z. and V.S. thank the funding received from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Individual Fellowships (GA no. 101026335). V.S. thanks Generalitat Valenciana (CIDEGENT 2018/036) for funding. The authors are grateful to the SCIC of the Universitat Jaume I for technical support. The work has been partially supported by the project TED2021-130288B-I00 funded by MCIN/AEI/10.13039/501100011033 and by EU NextGenerationEU/PRTR

    Multifunctional Polymers Based on Ionic Liquid and Rose Bengal Fragments for the Conversion of CO2 to Carbonates

    Get PDF
    Supported ionic liquid-like phases (SILLPs) containing Rose Bengal (RB) units are used to develop organocatalytic systems for the cycloaddition of CO2 to epoxides. The activity of the supported RB fragments can be fine-tuned by controlling the nature of the SILLPs (i.e., substitution at the imidazolium ring, cross-linking degree of the polymeric matrix, loading, etc.). Such a catalytic system prepared from cheap, simple, and commercially available components provides high activity and stability, with no decay in activity for at least 10 days of continuous use under flow conditions.Funding for open access charge: CRUE-Universitat Jaume IFunding for open access charge: CRUE-Universitat Jaume

    Chiral catalysts immobilized on achiral polymers: effect of the polymer support on the performance of the catalyst

    Get PDF
    Positive effects of the polymeric support on the performance of supported chiral catalysts, in terms of activity, stability and selectivity–enantioselectivity, have been reported when the support is properly selected and optimized opening the way to the design of more efficient catalytic systems

    Imidazolium based gemini amphiphiles derived from L-valine. Structural elements and surfactant properties

    Get PDF
    Imidazolium amphiphiles often display excellent surfactants properties, while amide functionalities and chirality can implement self-assembly. The introduction of these functionalities in imidazolium gemini amphiphiles is expected to allow tuning their aggregation, achieving a higher emulsifying capacity of interest for practical applications. L-valine-derived gemini surfactants have been prepared and their aggregation investigated using NMR, UV-CD, fluorescence, LS or microscopy. The imidazolium gemini amphiphiles synthetized, presented excellent surfactant properties. The aromatic substitution pattern defines additional geometric constrains facilitating a fine tune of their properties, displaying the para-substituted compound best properties. This can be associated to facilitating the required conformational organization of polar and apolar fragments, while reducing coulombic repulsions between imizadolium rings. Two critical aggregation concentrations (CACs) were observed by fluorescence in aqueous media, with the formation of well-defined vesicles in the second step. Dynamic equilibria between aggregates of different sizes seem to be present. These gemini surfactants revealed of interest as emulsifiers for oil/water systems and for controlled fragrance delivery using (R)-limonene as a benchmark volatile compound. (C) 2021 Elsevier B.V. All rights reserved.Peer reviewe

    Chiral imidazolium prolinate salts as efficient synzymatic organocatalysts for the asymmetric aldol reaction

    Get PDF
    Chiral imidazolium l-prolinate salts, providing a complex network of supramolecular interaction in a chiral environment, have been studied as synzymatic catalytic systems. They are demonstrated to be green and efficient chiral organocatalysts for direct asymmetric aldol reactions at room temperature. The corresponding aldol products were obtained with moderate to good enantioselectivities. The influence of the presence of chirality in both the imidazolium cation and the prolinate anion on the transfer of chirality from the organocatalyst to the aldol product has been studied. Moreover, interesting match/mismatch situations have been observed regarding configuration of chirality of the two components through the analysis of results for organocatalysts derived from both enantiomers of prolinate (R/S) and the trans/cis isomers for the chiral fragment of the cation. This is associated with differences in the corresponding reaction rates but also to the different tendencies for the formation of aggregates, as evidenced by nonlinear effects studies (NLE). Excellent activities, selectivities, and enantioselectivities could be achieved by an appropriate selection of the structural elements at the cation and anion

    Synergy between supported ionic liquid-like phases and immobilized palladium N-heterocyclic carbene–phosphine complexes for the Negishi reaction under flow conditions

    Get PDF
    The combination of supported ionic liquids and immobilized NHC–Pd–RuPhos led to active and more stable systems for the Negishi reaction under continuous flow conditions than those solely based on NHC–Pd–RuPhos. The fine tuning of the NHC–Pd catalyst and the SILLPs is a key factor for the optimization of the release and catch mechanism leading to a catalytic system easily recoverable and reusable for a large number of catalytic cycles enhancing the long-term catalytic performance

    Ionic liquids and continuous flow processes: a good marriage to design sustainable processes

    Get PDF
    In the last few years the use of Ionic Liquids (ILs) as alternative solvents for (bio)catalytic processes has increased substantially, and the benefits and different approaches reported to combine continuous flow systems and ILs are at the core of this overview. The synergy between both elements allowed us to highlight their great potential in manufacturing both bulk and fine chemicals by new and greener (bio)catalytic processesThis work was partially supported by MINECO, Spain (Ref: CTQ2011-28903) and Generalitat Valenciana (PROMETEO 2012/020) and UJI (P1-1B 2013-37

    Free ion diffusivity and charge concentration on cross-linked Polymeric Ionic Liquid iongels films based on sulfonated zwitterion salts and Lithium ions

    Full text link
    [EN] The properties of various mixtures of a zwitterionic ionic liquid (ZIs-1) and LiNTf 2, including their conductivity, have been studied showing how they can be adjusted through their molar composition. Conductivity tends to increase with the LiNTf2 content although it presents a minimum at the region close to the eutectic point. These mixtures also provide excellent features as liquid phases for the preparation of composite materials based on crosslinked PILs. The prepared films display excellent and tuneable properties as conducting materials, with conductivities that can be higher than 10 2 S cm 1 above 100 1C. The selected polymeric compositions show very good mechanical properties and thermal stability, even for low crosslinking degrees, along with a suitable flexibility and good transparency. The final properties of the films correlate with the composition of the monomeric mixture used and with that of the ZIs-1:LiNTf2 mixture.Financial support has been provided by MINECO (ENE/2015-69203-R and RTI2018-098233-B-C22) and Generalitat Valenciana (PROMETEO/2016/071). Technical support from the SECIC of the UJI is also acknowledged. DV thanks UNED (Costa Rica) for a predoctoral fellowship.Valverde, D.; Garcia Bernabe, A.; Andrio Balado, A.; Garcia-Verdugo, E.; Luis Lafuente, S.; Compañ Moreno, V. (2019). Free ion diffusivity and charge concentration on cross-linked Polymeric Ionic Liquid iongels films based on sulfonated zwitterion salts and Lithium ions. Physical Chemistry Chemical Physics. 21(32):17923-17932. https://doi.org/10.1039/c9cp01903kS17923179322132Etacheri, V., Marom, R., Elazari, R., Salitra, G., & Aurbach, D. (2011). Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 4(9), 3243. doi:10.1039/c1ee01598bArya, A., & Sharma, A. L. (2017). Polymer electrolytes for lithium ion batteries: a critical study. Ionics, 23(3), 497-540. doi:10.1007/s11581-016-1908-6Kalhoff, J., Eshetu, G. G., Bresser, D., & Passerini, S. (2015). Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives. ChemSusChem, 8(13), 2154-2175. doi:10.1002/cssc.201500284Eftekhari, A., Liu, Y., & Chen, P. (2016). Different roles of ionic liquids in lithium batteries. Journal of Power Sources, 334, 221-239. doi:10.1016/j.jpowsour.2016.10.025Osada, I., de Vries, H., Scrosati, B., & Passerini, S. (2015). Ionic-Liquid-Based Polymer Electrolytes for Battery Applications. Angewandte Chemie International Edition, 55(2), 500-513. doi:10.1002/anie.201504971Shaplov, A. S., Marcilla, R., & Mecerreyes, D. (2015). Recent Advances in Innovative Polymer Electrolytes based on Poly(ionic liquid)s. Electrochimica Acta, 175, 18-34. doi:10.1016/j.electacta.2015.03.038Yoshizawa, M., Hirao, M., Ito-Akita, K., & Ohno, H. (2001). Ion conduction in zwitterionic-type molten salts and their polymers. Journal of Materials Chemistry, 11(4), 1057-1062. doi:10.1039/b101079oWatanabe, M., Thomas, M. L., Zhang, S., Ueno, K., Yasuda, T., & Dokko, K. (2017). Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chemical Reviews, 117(10), 7190-7239. doi:10.1021/acs.chemrev.6b00504Yoshizawa, M., Narita, A., & Ohno, H. (2004). Design of Ionic Liquids for Electrochemical Applications. Australian Journal of Chemistry, 57(2), 139. doi:10.1071/ch03240Yoshizawa, M., & Ohno, H. (2004). Anhydrous proton transport system based on zwitterionic liquid and HTFSI. Chemical Communications, (16), 1828. doi:10.1039/b404137bYoshizawa-Fujita, M., Tamura, T., Takeoka, Y., & Rikukawa, M. (2011). Low-melting zwitterion: effect of oxyethylene units on thermal properties and conductivity. Chem. Commun., 47(8), 2345-2347. doi:10.1039/c0cc03754kPaschoal, V. H., Faria, L. F. O., & Ribeiro, M. C. C. (2017). Vibrational Spectroscopy of Ionic Liquids. Chemical Reviews, 117(10), 7053-7112. doi:10.1021/acs.chemrev.6b00461Narita, A., Shibayama, W., & Ohno, H. (2006). Structural factors to improve physico-chemical properties of zwitterions as ion conductive matrices. Journal of Materials Chemistry, 16(15), 1475. doi:10.1039/b515287aOhno, H., Yoshizawa-Fujita, M., & Kohno, Y. (2018). Design and properties of functional zwitterions derived from ionic liquids. Physical Chemistry Chemical Physics, 20(16), 10978-10991. doi:10.1039/c7cp08592cGarcía-Bernabé, A., Rivera, A., Granados, A., Luis, S. V., & Compañ, V. (2016). Ionic transport on composite polymers containing covalently attached and absorbed ionic liquid fragments. Electrochimica Acta, 213, 887-897. doi:10.1016/j.electacta.2016.08.018Altava, B., Compañ, V., Andrio, A., del Castillo, L. F., Mollá, S., Burguete, M. I., … Luis, S. V. (2015). Conductive films based on composite polymers containing ionic liquids absorbed on crosslinked polymeric ionic-like liquids (SILLPs). Polymer, 72, 69-81. doi:10.1016/j.polymer.2015.07.009Coelho, R. (1991). On the static permittivity of dipolar and conductive media — an educational approach. Journal of Non-Crystalline Solids, 131-133, 1136-1139. doi:10.1016/0022-3093(91)90740-wKlein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638Bandara, T. M. W. J., Dissanayake, M. A. K. L., Albinsson, I., & Mellander, B.-E. (2011). Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics, 189(1), 63-68. doi:10.1016/j.ssi.2011.03.004Choi, U. H., Mittal, A., Price, T. L., Gibson, H. W., Runt, J., & Colby, R. H. (2013). Polymerized Ionic Liquids with Enhanced Static Dielectric Constants. Macromolecules, 46(3), 1175-1186. doi:10.1021/ma301833jSerghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301Sørensen, T. S., Compañ, V., & Diaz-Calleja, R. (1996). Complex permittivity of a film of poly[4-(acryloxy)phenyl-(4-chlorophenyl)methanone] containing free ion impurities and the separation of the contributions from interfacial polarization, Maxwell–Wagner–Sillars effects and dielectric relaxations of the polymer chains. J. Chem. Soc., Faraday Trans., 92(11), 1947-1957. doi:10.1039/ft9969201947Sørensen, T. S., & Compañ, V. (1995). Complex permittivity of a conducting, dielectric layer containing arbitrary binary Nernst–Planck electrolytes with applications to polymer films and cellulose acetate membranes. J. Chem. Soc., Faraday Trans., 91(23), 4235-4250. doi:10.1039/ft9959104235Wang, Y., Fan, F., Agapov, A. L., Saito, T., Yang, J., Yu, X., … Sokolov, A. P. (2014). Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes. Polymer, 55(16), 4067-4076. doi:10.1016/j.polymer.2014.06.085Krause, C., Sangoro, J. R., Iacob, C., & Kremer, F. (2010). Charge Transport and Dipolar Relaxations in Imidazolium-Based Ionic Liquids. The Journal of Physical Chemistry B, 114(1), 382-386. doi:10.1021/jp908519uFragiadakis, D., Dou, S., Colby, R. H., & Runt, J. (2009). Molecular mobility and Li+ conduction in polyester copolymer ionomers based on poly(ethylene oxide). The Journal of Chemical Physics, 130(6), 064907. doi:10.1063/1.3063659Fragiadakis, D., Dou, S., Colby, R. H., & Runt, J. (2008). Molecular Mobility, Ion Mobility, and Mobile Ion Concentration in Poly(ethylene oxide)-Based Polyurethane Ionomers. Macromolecules, 41(15), 5723-5728. doi:10.1021/ma800263bLeys, J., Wübbenhorst, M., Preethy Menon, C., Rajesh, R., Thoen, J., Glorieux, C., … Longuemart, S. (2008). Temperature dependence of the electrical conductivity of imidazolium ionic liquids. The Journal of Chemical Physics, 128(6), 064509. doi:10.1063/1.2827462Sangoro, J. R., Serghei, A., Naumov, S., Galvosas, P., Kärger, J., Wespe, C., … Kremer, F. (2008). Charge transport and mass transport in imidazolium-based ionic liquids. Physical Review E, 77(5). doi:10.1103/physreve.77.051202Munar, A., Andrio, A., Iserte, R., & Compañ, V. (2011). Ionic conductivity and diffusion coefficients of lithium salt polymer electrolytes measured with dielectric spectroscopy. Journal of Non-Crystalline Solids, 357(16-17), 3064-3069. doi:10.1016/j.jnoncrysol.2011.04.012Garcia-Bernabé, A., Compañ, V., Burguete, M. I., García-Verdugo, E., Karbass, N., Luis, S. V., & Riande, E. (2010). Conductivity and Polarization Processes in Highly Cross-Linked Supported Ionic Liquid-Like Phases. The Journal of Physical Chemistry C, 114(15), 7030-7037. doi:10.1021/jp910535zCompañ, V., Molla, S., García Verdugo, E., Luis, S. V., & Burguete, M. I. (2012). Synthesis and characterization of the conductivity and polarization processes in supported ionic liquid-like phases (SILLPs). Journal of Non-Crystalline Solids, 358(9), 1228-1237. doi:10.1016/j.jnoncrysol.2012.02.028Huber, B., Rossrucker, L., Sundermeyer, J., & Roling, B. (2013). Ion transport properties of ionic liquid-based polyelectrolytes. Solid State Ionics, 247-248, 15-21. doi:10.1016/j.ssi.2013.05.023Shaplov, A. S., Marcilla, R., & Mecerreyes, D. (2015). Recent Advances in Innovative Polymer Electrolytes based on Poly(ionic liquid)s. Electrochimica Acta, 175, 18-34. doi:10.1016/j.electacta.2015.03.038Green, M. D., Wang, D., Hemp, S. T., Choi, J.-H., Winey, K. I., Heflin, J. R., & Long, T. E. (2012). Synthesis of imidazolium ABA triblock copolymers for electromechanical transducers. Polymer, 53(17), 3677-3686. doi:10.1016/j.polymer.2012.06.023Compañ, V., Smith So/rensen, T., Diaz‐Calleja, R., & Riande, E. (1996). Diffusion coefficients of conductive ions in a copolymer of vinylidene cyanide and vinyl acetate obtained from dielectric measurements using the model of Trukhan. Journal of Applied Physics, 79(1), 403-411. doi:10.1063/1.360844Wang, Y., Sun, C.-N., Fan, F., Sangoro, J. R., Berman, M. B., Greenbaum, S. G., … Sokolov, A. P. (2013). Examination of methods to determine free-ion diffusivity and number density from analysis of electrode polarization. Physical Review E, 87(4). doi:10.1103/physreve.87.042308Kunal, K., Robertson, C. G., Pawlus, S., Hahn, S. F., & Sokolov, A. P. (2008). Role of Chemical Structure in Fragility of Polymers: A Qualitative Picture. Macromolecules, 41(19), 7232-7238. doi:10.1021/ma801155cShaplov, A. S., Ponkratov, D. O., Vlasov, P. S., Lozinskaya, E. I., Gumileva, L. V., Surcin, C., … Vygodskii, Y. S. (2015). Ionic semi-interpenetrating networks as a new approach for highly conductive and stretchable polymer materials. Journal of Materials Chemistry A, 3(5), 2188-2198. doi:10.1039/c4ta05833jDudowicz, J., Freed, K. F., & Douglas, J. F. (2005). The Glass Transition Temperature of Polymer Melts†. The Journal of Physical Chemistry B, 109(45), 21285-21292. doi:10.1021/jp0523266J. C. A. Maxwell , Treatise of Electricity & Magnetism , Dover , New York , 1954 , pp. 310–314Leys, J., Rajesh, R. N., Menon, P. C., Glorieux, C., Longuemart, S., Nockemann, P., … Binnemans, K. (2010). Influence of the anion on the electrical conductivity and glass formation of 1-butyl-3-methylimidazolium ionic liquids. The Journal of Chemical Physics, 133(3), 034503. doi:10.1063/1.3455892Hayamizu, K., Akiba, E., Bando, T., & Aihara, Y. (2002). 1H, 7Li, and 19F nuclear magnetic resonance and ionic conductivity studies for liquid electrolytes composed of glymes and polyetheneglycol dimethyl ethers of CH3O(CH2CH2O)nCH3 (n=3–50) doped with LiN(SO2CF3)2. The Journal of Chemical Physics, 117(12), 5929-5939. doi:10.1063/1.1501279Agrawal, R. C., Kumar, R., & Gupta, R. K. (1998). Estimation of ionic drift velocity on some fast Ag+ ion conducting systems. Materials Science and Engineering: B, 57(1), 46-51. doi:10.1016/s0921-5107(98)00261-xG. A. Niklasson , A. K.Jonsson , M.Stromme , Y.Barsoukova and J. R.MacDonald , Impedance Spectroscopy , 2nd edn, Wiley , New York , 2005 , pp. 302–326Schütt, H. J., & Gerdes, E. (1992). Space-charge relaxation in ionicly conducting oxide glasses. I. Model and frequency response. Journal of Non-Crystalline Solids, 144, 1-13. doi:10.1016/s0022-3093(05)80377-1R. Coelho , Physics of Dielectrics , Elsevier Scientific Publishing Company , New York , 1979 , pp. 97–102Smith Srensen, T., Diaz-Calleja, R., Riande, E., Guzman, J., & Andrio, u. (1997). Contributions from interfacial polarization, conductivity and polymer relaxations to the complex permittivity of a film of poly[(5-ethyl-1,3-dioxan-5-yl)methyl acrylate] containing ionic impurities. Journal of the Chemical Society, Faraday Transactions, 93(14), 2399-2411. doi:10.1039/a701239

    Chemoenzymatic synthesis of optically active 2-(2- or 4-substituted-1H-imidazol-1-yl)cycloalcanols. Chiral additives for (L)-proline

    Get PDF
    Enantiopure substituted imidazoles obtained by enzymatic kinetic resolution can be promising candidates as co-catalysts for aldol reactions catalysed by (L)-proline. These additives seem to form supramolecular complexes with the catalyst through the formation of H-bonds, leading to significant improvement in both the reaction rates and selectivity of the reaction. Herein, we present our results on the use of these substituted trans-2-imidazoyl-cycloalkanols as additives for the (L)-proline catalyzed direct aldol reaction between ketones and aromatic aldehydes

    Preparation of nanofibers mats derived from task-specific polymeric ionic liquid for sensing and catalytic applications

    Get PDF
    Nanofibers mats derived from the task-specific functionalized polymeric ionic liquids based on homocysteine thiolactone are obtained by electrospinning them as blends with polyvinylpyrrolidone. The presence of this functional moiety allowed the post-functionalization of these mats through the aminolysis of the thiolactone ring in the presence of an amine by a thiol–alkene “click” reaction. Under controlled experimental conditions the modification can be performed introducing different functionalization and crosslinking of the electrospun fibers, while maintaining the nanostructure obtained by the electrospinning. Initial studies suggest that the nanofibers based on these functionalized polymeric ionic liquids can be used in both sensing and catalytic applications
    corecore