35 research outputs found

    Obesity Induces Hypothalamic Endoplasmic Reticulum Stress and Impairs Proopiomelanocortin (POMC) Post-translational Processing

    Get PDF
    It was shown previously that abnormal prohormone processing or inactive proconverting enzymes that are responsible for this processing cause profound obesity. Our laboratory demonstrated earlier that in the diet-induced obesity (DIO) state, the appetite-suppressing neuropeptide -melanocyte-stimulating hormone ( -MSH) is reduced, yet the mRNA of its precursor protein proopiomelanocortin (POMC) remained unaltered. It was also shown that the DIO condition promotes the development of endoplasmic reticulum (ER) stress and leptin resistance. In the current study, using an in vivo model combined with in vitro experiments, we demonstrate that obesity-induced ER stress obstructs the post-translational processing of POMC by decreasing proconverting enzyme 2, which catalyzes the conversion of adrenocorticotropin to -MSH, thereby decreasing -MSH peptide production. This novel mechanism of ER stress affecting POMC processing in DIO highlights the importance of ER stress in regulating central energy balance in obesity.Fil: Cakir, Isin. Brown University; Estados UnidosFil: Cyr, Nicole E.. Brown University; Estados UnidosFil: Perello, Mario. Brown University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Litvinov, Bogdan Patedakis. Brown University; Estados UnidosFil: Romero, Amparo. Brown University; Estados UnidosFil: Stuart, Ronald C.. Brown University; Estados UnidosFil: Nillni, Eduardo A.. Brown University; Estados Unido

    Obesity Induces Hypothalamic Endoplasmic Reticulum Stress and Impairs Proopiomelanocortin (POMC) Post-translational Processing

    Get PDF
    It was shown previously that abnormal prohormone processing or inactive proconverting enzymes that are responsible for this processing cause profound obesity. Our laboratory demonstrated earlier that in the diet-induced obesity (DIO) state, the appetite-suppressing neuropeptide -melanocyte-stimulating hormone ( -MSH) is reduced, yet the mRNA of its precursor protein proopiomelanocortin (POMC) remained unaltered. It was also shown that the DIO condition promotes the development of endoplasmic reticulum (ER) stress and leptin resistance. In the current study, using an in vivo model combined with in vitro experiments, we demonstrate that obesity-induced ER stress obstructs the post-translational processing of POMC by decreasing proconverting enzyme 2, which catalyzes the conversion of adrenocorticotropin to -MSH, thereby decreasing -MSH peptide production. This novel mechanism of ER stress affecting POMC processing in DIO highlights the importance of ER stress in regulating central energy balance in obesity.Fil: Cakir, Isin. Brown University; Estados UnidosFil: Cyr, Nicole E.. Brown University; Estados UnidosFil: Perello, Mario. Brown University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Litvinov, Bogdan Patedakis. Brown University; Estados UnidosFil: Romero, Amparo. Brown University; Estados UnidosFil: Stuart, Ronald C.. Brown University; Estados UnidosFil: Nillni, Eduardo A.. Brown University; Estados Unido

    Preoptic leptin signaling modulates energy balance independent of body temperature regulation

    Get PDF
    © Yu et al. The adipokine leptin acts on the brain to regulate energy balance but specific functions in many brain areas remain poorly understood. Among these, the preoptic area (POA) is well known to regulate core body temperature by controlling brown fat thermogenesis, and we have previously shown that glutamatergic, long-form leptin receptor (Lepr)-expressing neurons in the POA are stimulated by warm ambient temperature and suppress energy expenditure and food intake. Here we further investigate the role of POA leptin signaling in body weight regulation and its relationship to body temperature regulation in mice. We show that POA Lepr signaling modulates energy expenditure in response to internal energy state, and thus contributes to body weight homeostasis. However, POA leptin signaling is not involved in ambient temperature-dependent metabolic adaptations. Our study reveals a novel cell population through which leptin regulates body weight

    Levodopa-Induced Dyskinesia Is Associated with Increased Thyrotropin Releasing Hormone in the Dorsal Striatum of Hemi-Parkinsonian Rats

    Get PDF
    Background Dyskinesias associated with involuntary movements and painful muscle contractions are a common and severe complication of standard levodopa (L-DOPA, L-3,4-dihydroxyphenylalanine) therapy for Parkinson's disease. Pathologic neuroplasticity leading to hyper-responsive dopamine receptor signaling in the sensorimotor striatum is thought to underlie this currently untreatable condition. Methodology/Principal Findings Quantitative real-time polymerase chain reaction (PCR) was employed to evaluate the molecular changes associated with L-DOPA-induced dyskinesias in Parkinson's disease. With this technique, we determined that thyrotropin releasing hormone (TRH) was greatly increased in the dopamine-depleted striatum of hemi-parkinsonian rats that developed abnormal movements in response to L-DOPA therapy, relative to the levels measured in the contralateral non-dopamine-depleted striatum, and in the striatum of non-dyskinetic control rats. ProTRH immunostaining suggested that TRH peptide levels were almost absent in the dopamine-depleted striatum of control rats that did not develop dyskinesias, but in the dyskinetic rats, proTRH immunostaining was dramatically up-regulated in the striatum, particularly in the sensorimotor striatum. This up-regulation of TRH peptide affected striatal medium spiny neurons of both the direct and indirect pathways, as well as neurons in striosomes. Conclusions/Significance TRH is not known to be a key striatal neuromodulator, but intrastriatal injection of TRH in experimental animals can induce abnormal movements, apparently through increasing dopamine release. Our finding of a dramatic and selective up-regulation of TRH expression in the sensorimotor striatum of dyskinetic rat models suggests a TRH-mediated regulatory mechanism that may underlie the pathologic neuroplasticity driving dopamine hyper-responsivity in Parkinson's disease.Morris K. Udall Center for Excellence in Parkinson’s Research at MGH/MITNational Institutes of Health (U.S.) (NIH NS38372)American Parkinson Disease Association, Inc.University of Alabama at BirminghamMassachusetts General HospitalNational Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (NIDDK/NIH grant R01 DK58148)National Institute of Neurological Disorders and Stroke (U.S.) (R01 NINDS/NIH grant NS045231)Stanley H. and Sheila G. Sydney FundMichael J. Fox Foundation for Parkinson's Researc

    Hypothalamic Sirt1 Regulates Food Intake in a Rodent Model System

    Get PDF
    Sirt1 is an evolutionarily conserved NAD + dependent deacetylase involved in a wide range of processes including cellular differentiation, apoptosis, as well as metabolism, and aging. In this study, we investigated the role of hypothalamic Sirt1 in energy balance. Pharmacological inhibition or siRNA mediated knock down of hypothalamic Sirt1 showed to decrease food intake and body weight gain. Central administration of a specific melanocortin antagonist, SHU9119, reversed the anorectic effect of hypothalamic Sirt1 inhibition, suggesting that Sirt1 regulates food intake through the central melanocortin signaling. We also showed that fasting increases hypothalamic Sirt1 expression and decreases FoxO1 (Forkhead transcription factor) acetylation suggesting that Sirt1 regulates the central melanocortin system in a FoxO1 dependent manner. In addition, hypothalamic Sirt1 showed to regulate S6K signaling such that inhibition of the fasting induced Sirt1 activity results in up-regulation of the S6K pathway. Thus, this is the first study providing a novel role for the hypothalamic Sirt1 in the regulation of food intake and body weight. Given the role of Sirt1 in several peripheral tissues and hypothalamus, potential therapies centered on Sirt1 regulation might provide promising therapies in the treatment of metabolic diseases including obesity
    corecore