11 research outputs found

    The Use of GARCH Autoregressive Models in Estimating and Forecasting the Crude Oil Volatility

    Get PDF
    Today, oil is one of the most popular commodities traded globally, due to its indispensable character and multiple properties offered to mankind. Increased attention is paid to the analysis of volatile and fluctuating trends in the overall price of this valuable energy source. Using the autoregressive conditional heteroskedasticity models such as GARCH(1,1), GARCH-M(1,1) and EGARCH(1,1), the present study has as a priority objective in estimating and predicting the volatility of the oil returns series (Brent Crude Oil return series) in the 1987-2022. The main results highlighted the preference in using the asymmetric model EGARCH (1,1) on the measurement of conditional variance, showing that Brent Crude Oil reacts over 90% to any existing market’s shock (i.e.: information, events, facts, news, etc.) in a negative manner/way. At the same time, various tests and evaluation conditions were used (ARCH-LM Test, Durbin-Waston Test, High Log likelihood, Lowest Schwarz Information Criteria) in investigating the level of performance in estimation the conditional crude oil volatility. Each GARCH (1,1) model is meeting brilliantly these conditions and acquiring the character of stability and validity in use. At the same time, performing forecast analysis on crude oil volatility in two different time periods: 1987-2022, respectively 2020-2022, it was shown that existence of the phenomenon of clustering-volatility over the time, with strong implications for the functioning mechanism of international financial markets. Fulfilling those restrictive conditions, the symmetric and parametric model GARCH-M (1,1) becomes, in our case, the most efficient model in forecasting the volatility of Brent Crude Oil return series in the analysed period

    Ex Situ LIBS Analysis of WEST Divertor Wall Tiles after C3 Campaign

    Get PDF
    Fuel retention monitoring in tokamak walls requires the development of remote composition analysis methods such as laser-induced breakdown spectroscopy (LIBS). The present study investigates the feasibility of the LIBS method to analyse the composition and fuel retention in three samples from WEST divertor erosion marker tiles after the experimental campaign C3. The investigated samples originated from tile regions outside of strong erosion and deposition regions, where the variation of thin deposit layers is relatively small and facilitates cross-comparison between different analysis methods. The depth profiles of main constituents W, Mo and C were consistent with depth profiles determined by other composition analysis methods, such as glow-discharge optical emission spectroscopy (GDOES) and secondary ion mass spectrometry (SIMS). The average LIBS depth resolution determined from depth profiles was 100 nm/shot. The averaging of the spectra collected from multiple spots of a same sample allowed us to improve the signal-to-noise ratio, investigate the presence of fuel D and trace impurities such as O and B. In the investigated tile regions with negligible erosion and deposition, these impurities were clearly detectable during the first laser shot, while the signal decreased to noise level after a few subsequent laser shots at the same spot. LIBS investigation of samples originating from the deposition regions of tiles may further clarify LIBS’ ability to investigate trace impurities

    Combined Laser Alloying/Dispersing and Plasma Nitriding, an Efficient Treatment for Improving the Service Lifetime of the Forging Tools

    No full text
    During the application, the active surface of the forging dies is subjected to intense mechanical and thermal stresses combined with chemical oxidation. The fatigue resistance is an important characteristic which limits the service lifetime of the forging tools. This characteristic was significantly improved by a combined treatment between laser alloying/dispersing and plasma nitriding. This treatment was developed for W1.2365 and W1.2344 steels using TiC and WC + Co powders as additive materials. The surface layers have been examined by optical microscopy, glow discharge optical spectrometry (GDOS), energy dispersive X-ray (EDX), X-ray microtomography and other techniques. The combined treatment was successfully applied to a number of 13 forging tools from 4 European Companies, leading to an increase of their lifetime by factors ranging between 180 and 270%

    Comparison of LIBS results on ITER-relevant samples obtained by nanosecond and picosecond lasers

    Get PDF
    This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Work performed under EUROfusion WP PFC.ITER foresees applying laser induced breakdown spectroscopy (LIBS) as a tool for quantitative assessment of fuel retention in the first walls. One open problem related to LIBS application is the choice of the laser type. Here we compare two Nd/YAG lasers with different pulse durations, 0.15 and 8 ns, working at λ = 1064 nm for LIBS studies of samples with D-doped W/Al coatings of ≈ 3 μm thickness (Al is used as a proxy of Be) on Mo. Low pressure argon was used as a background gas. Experiments were done in conditions where other factors (broadening of spectral lines, signal-to-noise ratio, limited thickness of coatings etc.) did not shadow the effect of laser pulse duration. For these reasons, low pressure argon was used as the background gas and fluences were kept at comparatively low values. Spectra of laser-produced plasma were recorded as a function of the number of laser pulses. Partially overlapping lines of hydrogen isotopes were fitted with Voigt contours, intensities were fitted and depth profiles of deuterium were reconstructed. The relative standard error of curve-fitting of spectra recorded with the laser of shorter pulse duration was two times smaller than that recorded by the longer pulse laser. The electron density was found from the Stark broadening of Hα line of the laser-produced plasma and the electron temperature of plasma was found on the basis W and Mo lines. It was found that in the case of ps laser an acceptable accuracy of the detection of deuterium was possible at considerably lower values of fluence. Steps needed for comparison of ps and ns lasers in ITER-relevant conditions were discussed.Horizon 2020 Framework Programme 633053; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Resonant Laser Induced Breakdown Spectroscopy for quantitative elemental depth profile analysis of WTa coating

    No full text
    This work reports on the procedure of Resonant-LIBS, in which ablation and subsequent excitation is achieved by fine-tuning an Optical Parametric Oscillator (OPO) laser to the resonant transition of tungsten (W I) at 255.14 nm and analyzing the optical emission spectroscopy results. Compared to conventional LIBS, the ablation rate is significantly reduced in the resonant regime, resulting in finer resolution of depth profiles. This reduction in ablation rate can be attributed to a process called Resonance Laser Ablation (RLA) where a part of the laser energy is employed for ablation, while the rest is dedicated to resonant excitation. The sample under consideration is a WTa-coated (7μm) Mo substrate prepared by a dual magnetron sputtering system. These efforts are motivated by the need for improvement in quantitative depth analysis of W-based Plasma-Facing Components (PFC). Particularly to target the undesirable surface modifications due to the interaction with H isotopes in fusion plasma, such as fuel retention or erosion/deposition

    Experiments with reduced single pass absorption at ASDEX Upgrade – instrumentation and applications

    No full text
    Reflecting gratings have been installed in the vacuum vessel of ASDEX Upgrade for all beamlines of the electron cyclotron resonance heating system. Potentially unabsorbed millimetre wave power after the first pass through the plasma is redirected towards the plasma centre. This increases the efficiency of heating schemes with reduced single pass absorption like O-2 or X-3. In order to monitor beam position and power, thermocouples were installed into the gratings. A numerical model was developed to evaluate the beam intensity during short pulses from the thermocouple measurement in a non-stationary environment. An experiment was carried out, where only the X-3 resonance is present in the plasma, and the millimetre wave beam shine-through was measured successfully as a function of the central plasma electron temperature. This allows to deduce the X-3 absorption experimentally. Scanning the launching angles, it seems possible to measure the 2D beam cross section after the first pass through the plasma

    Ex Situ LIBS Analysis of WEST Divertor Wall Tiles after C3 Campaign

    No full text
    Fuel retention monitoring in tokamak walls requires the development of remote composition analysis methods such as laser-induced breakdown spectroscopy (LIBS). The present study investigates the feasibility of the LIBS method to analyse the composition and fuel retention in three samples from WEST divertor erosion marker tiles after the experimental campaign C3. The investigated samples originated from tile regions outside of strong erosion and deposition regions, where the variation of thin deposit layers is relatively small and facilitates cross-comparison between different analysis methods. The depth profiles of main constituents W, Mo and C were consistent with depth profiles determined by other composition analysis methods, such as glow-discharge optical emission spectroscopy (GDOES) and secondary ion mass spectrometry (SIMS). The average LIBS depth resolution determined from depth profiles was 100 nm/shot. The averaging of the spectra collected from multiple spots of a same sample allowed us to improve the signal-to-noise ratio, investigate the presence of fuel D and trace impurities such as O and B. In the investigated tile regions with negligible erosion and deposition, these impurities were clearly detectable during the first laser shot, while the signal decreased to noise level after a few subsequent laser shots at the same spot. LIBS investigation of samples originating from the deposition regions of tiles may further clarify LIBS’ ability to investigate trace impurities

    Performance of tungsten plasma facing components in the stellarator experiment W7-X: Recent results from the first OP2 campaign

    No full text
    The transition to reactor-relevant materials for the plasma facing components (PFCs) is an important and necessary step to provide a proof of principle that the stellarator concept can meet the requirements of a future fusion reactor by demonstrating high performance steady-state operation. As a first step to gain experience with tungsten as plasma-facing material in the Wendelstein 7-X (W7-X) stellarator, graphite tiles coated with an approximately 10 µm MedC tungsten layer (NILPRP Bucharest) were installed to complete the ECRH beam dump area in two of the five plasma vessel modules over an area of approximately one square meter each. In addition, tungsten baffle tiles are installed (40 tiles in total) with either bulk tungsten as part of NBI shine-through target or with a tungsten heavy alloy (W95-Ni3.5-Cu1.5) to replace the graphite tiles that were previously thermally overloaded. Based on an advanced diffusive field line tracing method and EMC3-Eirene simulations, the overloaded baffle tiles were redesigned by making the tiles thinner (i.e. moving the plasma-facing surface (PFS) away from the hot plasma region) and by reducing the local angle of incidence through toroidal displacement of the watershed. Significant erosion of the tungsten tiles can only be expected if sputtering by impurity ions such as carbon or oxygen ions contributes. However, the resulting central concentration of tungsten and the corresponding radiation losses are expected to be marginal. The expected deposition of carbon on the tungsten surfaces in the baffle regions mitigates further the possible tungsten enrichment in the core plasma. In OP2.1, no adverse effects of the installed tungsten PFCs on the plasma performance were observed during normal plasma operation. With the design changes made in the baffle area, the predicted heat load reductions could be experimentally confirmed
    corecore