47 research outputs found

    Manufacturing High-Fidelity Lunar Agglutinate Simulants

    Get PDF
    The lunar regolith is very different from many naturally occurring material on Earth because it forms in the unique, impact-dominated environment of the lunar surface. Lunar regolith is composed of five basic particle types: mineral fragments, pristine crystalline rock fragments, breccia fragments, glasses of various kinds, and agglutinates (glass-bonded aggregates). Agglutinates are abundant in the lunar regolith, especially in mature regoliths where they can be the dominant component.This presentation will discuss the technical feasibility of manufacturing-simulated agglutinate particles that match many of the unique properties of lunar agglutinates

    Characterizing the Effect of Shock on Isotopic Ages I: Ferroan Anorthosite Major Elements

    Get PDF
    A study underway at Marshall Space Flight Center is further characterizing the effects of shock on isotopic ages. The study was inspired by the work of L. Nyquist et al. [1, 2], but goes beyond their work by investigating the spatial distribution of elements in lunar ferroan anorthosites (FANs) and magnesium-suite (Mg-suite) rocks in order to understand the processes that may influence the radioisotope ages obtained on early lunar samples. This paper discusses the first data set (major elements) obtained on FANs 62236 and 67075

    Beneficiation of Stillwater Complex Rock for the Production of Lunar Simulants

    Get PDF
    The availability of pure, high calcium plagioclase would be a significant asset in any attempt to manufacture high-quality lunar simulants. A suitable plagioclase product can be obtained from materials obtained from the Stillwater Complex of Montana. The access, geology, petrology, and mineralogy of the relevant rocks and the mill tailings are described here. This study demonstrates successful plagioclase recovery from mill tailings produced by the Stillwater Mine Company. Hydrogen peroxide was used to remove carboxymethyl cellulose from the tailing. The characteristics of the plagioclase products are shown and locked grains are identified as a limit to achievable purity. Based on the experimental results, flowsheets were developed showing how these resources could be processed and made into 'separates' of (1) high calcium plagioclase and (2) orthopyroxene/clinopyroxene with the thought that they would be combined later to make simulant

    Generation of Requirements for Simulant Measurements

    Get PDF
    This TM presents a formal, logical explanation of the parameters selected for the figure of merit (FoM) algorithm. The FoM algorithm is used to evaluate lunar regolith simulant. The objectives, requirements, assumptions, and analysis behind the parameters are provided. A requirement is derived to verify and validate simulant performance versus lunar regolith from NASA s objectives for lunar simulants. This requirement leads to a specification that comparative measurements be taken the same way on the regolith and the simulant. In turn, this leads to a set of nine criteria with which to evaluate comparative measurements. Many of the potential measurements of interest are not defensible under these criteria. For example, many geotechnical properties of interest were not explicitly measured during Apollo and they can only be measured in situ on the Moon. A 2005 workshop identified 32 properties of major interest to users. Virtually all of the properties are tightly constrained, though not predictable, if just four parameters are controlled. Three parameters (composition, size, and shape) are recognized as being definable at the particle level. The fourth parameter (density) is a bulk property. In recent work, a fifth parameter (spectroscopy) has been identified, which will need to be added to future releases of the FoM

    Unveiling the Mysteries of Mars with a Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM)

    Get PDF
    Development of a miniaturized scanning electron microscope that will utilize the martian atmosphere to dissipate charge during analysis continues. This instrument is expected to be used on a future rover or lander to answer fundamental Mars science questions. To identify the most important questions, a survey was taken at the 47th Lunar and Planetary Science Conference (LPSC). From the gathered information initial topics were identified for a SEM on the martian surface. These priorities are identified and discussed below. Additionally, a concept of operations is provided with the goal of maximizing the science obtained with the minimum amount of communication with the instrument

    ISM In-Space Manufacturing

    Get PDF
    Develop and enable the technologies, materials, and processes required to provide affordable, sustainable on-demand manufacturing, recycling, and repair during Exploration Missions

    Development of Additive Construction Technologies for Application to Development of Lunar/Martian Surface Structures Using In-Situ Materials

    Get PDF
    For long-duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As human presence on these bodies expands, so must the breadth of the structures required to accommodate them including habitats, laboratories, berms, radiation shielding for natural radiation and surface reactors, garages, solar storm shelters, greenhouses, etc. Planetary surface structure manufacturing and assembly technologies that incorporate in situ resources provide options for autonomous, affordable, pre-positioned environments with radiation shielding features and protection from micrometeorites, exhaust plume debris, and other hazards. The ability to use in-situ materials to construct these structures will provide a benefit in the reduction of up-mass that would otherwise make long-term Moon or Mars structures cost prohibitive. The ability to fabricate structures in situ brings with it the ability to repair these structures, which allows for the self-sufficiency and sustainability necessary for long-duration habitation. Previously, under the auspices of the MSFC In-Situ Fabrication and Repair (ISFR) project and more recently, under the jointly-managed MSFC/KSC Additive Construction with Mobile Emplacement (ACME) project, the MSFC Surface Structures Group has been developing materials and construction technologies to support future planetary habitats with in-situ resources. One such additive construction technology is known as Contour Crafting. This paper presents the results to date of these efforts, including development of novel nozzle concepts for advanced layer deposition using this process. Conceived initially for rapid development of cementitious structures on Earth, it also lends itself exceptionally well to the automated fabrication of planetary surface structures using minimally processed regolith as aggregate, and binders developed from in situ materials as well. This process has been used successfully in the fabrication of construction elements using lunar regolith simulant and Mars regolith simulant, both with various binder materials. Future planned activities will be discussed as well

    NASA Lunar Regolith Simulant Program

    Get PDF
    Lunar regolith simulant production is absolutely critical to returning man to the Moon. Regolith simulant is used to test hardware exposed to the lunar surface environment, simulate health risks to astronauts, practice in situ resource utilization (ISRU) techniques, and evaluate dust mitigation strategies. Lunar regolith simulant design, production process, and management is a cooperative venture between members of the NASA Marshall Space Flight Center (MSFC) and the U.S. Geological Survey (USGS). The MSFC simulant team is a satellite of the Dust group based at Glenn Research Center. The goals of the cooperative group are to (1) reproduce characteristics of lunar regolith using simulants, (2) produce simulants as cheaply as possible, (3) produce simulants in the amount needed, and (4) produce simulants to meet users? schedules

    A Carbonaceous Chondrite Based Simulant of Phobos

    Get PDF
    In support of an ESA-funded concept study considering a sample return mission, a simulant of the Martian moon Phobos was needed. There are no samples of the Phobos regolith, therefore none of the four characteristics normally used to design a simulant are explicitly known for Phobos. Because of this, specifications for a Phobos simulant were based on spectroscopy, other remote measurements, and judgment. A composition based on the Tagish Lake meteorite was assumed. The requirement that sterility be achieved, especially given the required organic content, was unusual and problematic. The final design mixed JSC-1A, antigorite, pseudo-agglutinates and gilsonite. Sterility was achieved by radiation in a commercial facility
    corecore