48 research outputs found
Seven challenges for model-driven data collection in experimental and observational studies
Infectious disease models are both concise statements of hypotheses and powerful techniques for creating tools from hypotheses and theories. As such, they have tremendous potential for guiding data collection in experimental and observational studies, leading to more efficient testing of hypotheses and more robust study designs. In numerous instances, infectious disease models have played a key role in informing data collection, including the Garki project studying malaria, the response to the 2009 pandemic of H1N1 influenza in the United Kingdom and studies of T-cell immunodynamics in mammals. However, such synergies remain the exception rather than the rule; and a close marriage of dynamic modeling and empirical data collection is far from the norm in infectious disease research. Overcoming the challenges to using models to inform data collection has the potential to accelerate innovation and to improve practice in how we deal with infectious disease threats
A motif-based approach to network epidemics
Networks have become an indispensable tool in modelling infectious diseases, with the structure of epidemiologically relevant contacts known to affect both the dynamics of the infection process and the efficacy of intervention strategies. One of the key reasons for this is the presence of clustering in contact networks, which is typically analysed in terms of prevalence of triangles in the network. We present a more general approach, based on the prevalence of different four-motifs, in the context of ODE approximations to network dynamics. This is shown to outperform existing models for a range of small world networks
The social contact hypothesis under the assumption of endemic equilibrium: Elucidating the transmission potential of VZV in Europe.
The basic reproduction number R0 and the effective reproduction number R are pivotal parameters in infectious disease epidemiology, quantifying the transmission potential of an infection in a population. We estimate both parameters from 13 pre-vaccination serological data sets on varicella zoster virus (VZV) in 12 European countries and from population-based social contact surveys under the commonly made assumptions of endemic and demographic equilibrium. The fit to the serology is evaluated using the inferred effective reproduction number R as a model eligibility criterion combined with AIC as a model selection criterion. For only 2 out of 12 countries, the common choice of a constant proportionality factor is sufficient to provide a good fit to the seroprevalence data. For the other countries, an age-specific proportionality factor provides a better fit, assuming physical contacts lasting longer than 15 min are a good proxy for potential varicella transmission events. In all countries, primary infection with VZV most often occurs in early childhood, but there is substantial variation in transmission potential with R0 ranging from 2.8 in England and Wales to 7.6 in The Netherlands. Two non-parametric methods, the maximal information coefficient (MIC) and a random forest approach, are used to explain these differences in R0 in terms of relevant country-specific characteristics. Our results suggest an association with three general factors: inequality in wealth, infant vaccination coverage and child care attendance. This illustrates the need to consider fundamental differences between European countries when formulating and parameterizing infectious disease models
Predicted norovirus resurgence in 2021–2022 due to the relaxation of nonpharmaceutical interventions associated with COVID-19 restrictions in England: a mathematical modeling study
Background: To reduce the coronavirus disease burden in England, along with many other countries, the government implemented a package of non-pharmaceutical interventions (NPIs) that have also impacted other transmissible infectious diseases such as norovirus. It is unclear what future norovirus disease incidence is likely to look like upon lifting these restrictions. Methods: Here we use a mathematical model of norovirus fitted to community incidence data in England to project forward expected incidence based on contact surveys that have been collected throughout 2020–2021. Results: We report that susceptibility to norovirus infection has likely increased between March 2020 and mid-2021. Depending upon assumptions of future contact patterns incidence of norovirus that is similar to pre-pandemic levels or an increase beyond what has been previously reported is likely to occur once restrictions are lifted. Should adult contact patterns return to 80% of pre-pandemic levels, the incidence of norovirus will be similar to previous years. If contact patterns return to pre-pandemic levels, there is a potential for the expected annual incidence to be up to 2-fold larger than in a typical year. The age-specific incidence is similar across all ages. Conclusions: Continued national surveillance for endemic diseases such as norovirus will be essential after NPIs are lifted to allow healthcare services to adequately prepare for a potential increase in cases and hospital pressures beyond what is typically experienced
Modeling infectious disease dynamics in the complex landscape of global health.
Despite some notable successes in the control of infectious diseases, transmissible pathogens still pose an enormous threat to human and animal health. The ecological and evolutionary dynamics of infections play out on a wide range of interconnected temporal, organizational, and spatial scales, which span hours to months, cells to ecosystems, and local to global spread. Moreover, some pathogens are directly transmitted between individuals of a single species, whereas others circulate among multiple hosts, need arthropod vectors, or can survive in environmental reservoirs. Many factors, including increasing antimicrobial resistance, increased human connectivity and changeable human behavior, elevate prevention and control from matters of national policy to international challenge. In the face of this complexity, mathematical models offer valuable tools for synthesizing information to understand epidemiological patterns, and for developing quantitative evidence for decision-making in global health
Partially wrong? Partial equilibrium and the economic analysis of public health emergencies of international concern
Parieu Marie-Louis-Pierre Félix Esquirou de. Nomination des inspecteurs de l'instruction primaire. In: Bulletin administratif de l'instruction publique. Tome 1 n°11, novembre 1850. pp. 371-389
Estimating the cost-effectiveness of vaccination against herpes zoster in England and Wales
A live-attenuated vaccine against herpes zoster (HZ) has been approved for use, on the basis of a large-scale clinical trial that suggests that the vaccine is safe and efficacious. This study uses a Markov cohort model to estimate whether routine vaccination of the elderly (60+) would be cost-effective, when compared with other uses of health care resources. Vaccine efficacy parameters are estimated by fitting a model to clinical trial data. Estimates of QALY losses due to acute HZ and post-herpetic neuralgia were derived by fitting models to data on the duration of pain by severity and the QoL detriment associated with different severity categories, as reported in a number of different studies. Other parameters (such as cost and incidence estimates) were based on the literature, or UK data sources. The results suggest that vaccination of 65 year olds is likely to be cost-effective (base-case ICER=pound20,400 per QALY gained). If the vaccine does offer additional protection against either the severity of disease or the likelihood of developing PHN (as suggested by the clinical trial), then vaccination of all elderly age groups is highly likely to be deemed cost-effective. Vaccination at either 65 or 70 years (depending on assumptions of the vaccine action) is most cost-effective. Including a booster dose at a later age is unlikely to be cost-effective