2,568 research outputs found

    How can large-scale twisted magnetic structures naturally emerge from buoyancy instabilities?

    Get PDF
    We consider the three-dimensional instability of a layer of horizontal magnetic field in a polytropic atmosphere where, contrary to previous studies, the field lines in the initial state are not unidirectional. We show that if the twist is initially concentrated inside the unstable layer, the modifications of the instability reported by several authors (see e.g. Cattaneo et al. (1990)) are only observed when the calculation is restricted to two dimensions. In three dimensions, the usual interchange instability occurs, in the direction fixed by the field lines at the interface between the layer and the field-free region. We therefore introduce a new configuration: the instability now develops in a weakly magnetised atmosphere where the direction of the field can vary with respect to the direction of the strong unstable field below, the twist being now concentrated at the upper interface. Both linear stability analysis and non-linear direct numerical simulations are used to study this configuration. We show that from the small-scale interchange instability, large-scale twisted coherent magnetic structures are spontaneously formed, with possible implications to the formation of active regions from a deep-seated solar magnetic field

    The SCUBA Local Universe Galaxy Survey I: First Measurements of the Submillimetre Luminosity and Dust Mass Functions

    Full text link
    We have used SCUBA to observe a complete sample of 104 galaxies selected at 60 microns from the IRAS BGS and we present here the 850 micron measurements. Fitting the 60,100 and 850 micron fluxes with a single temperature dust model gives the sample mean temperature T=36 K and beta = 1.3. We do not rule out the possibility of dust which is colder than this, if a 20 K component was present then our dust masses would increase by factor 1.5-3. We present the first measurements of the luminosity and dust mass functions, which were well fitted by Schechter functions (unlike those 60 microns). We have correlated many global galaxy properties with the submillimetre and find that there is a tendancy for less optically luminous galaxies to contain warmer dust and have greater star formation efficiencies (cf. Young 1999). The average gas-to-dust ratio for the sample is 581 +/- 43 (using both atomic and molecular hydrogen), significantly higher than the Galactic value of 160. We believe this discrepancy is due to a cold dust component at T < 20 K. There is a suprisingly tight correlation between dust mass and the mass of molecular hydrogen as estimated from CO measurements, with an intrinsic scatter of ~50%.Comment: 24 pages, 15 figures, 8 tables, accepted for publication in MNRA

    Modeling the radial abundance distribution of the transition galaxy ngc 1313

    Get PDF
    NGC 1313 is the most massive disk galaxy showing a flat radial abundance distribution in its interstellar gas, a behavior generally observed in magellanic and irregular galaxies. We have attempted to reproduce this flat abundance distribution using a multiphase chemical evolution model, which has been previously used sucessfully to depict other spiral galaxies along the Hubble morphological sequence. We found that it is not possible to reproduce the flat radial abundance distribution in NGC 1313, and at the same time, be consistent with observed radial distributions of other key parameters such the surface gas density and star formation profiles. We conclude that a more complicated galactic evolution model including radial flows, and possibly mass loss due to supernova explosions and winds, is necessary to explain the apparent chemical uniformity of the disk of NGC 1313Comment: 14 paginas, 4 figures, to be published in ApJ, apri

    Modelling the hepatitis B vaccination programme in prisons

    Get PDF
    A vaccination programme offering hepatitis B (HBV) vaccine at reception into prison has been introduced into selected prisons in England and Wales. Over the coming years it is anticipated this vaccination programme will be extended. A model has been developed to assess the potential impact of the programme on the vaccination coverage of prisoners, ex-prisoners, and injecting drug users (IDUs). Under a range of coverage scenarios, the model predicts the change over time in the vaccination status of new entrants to prison, current prisoners and IDUs in the community. The model predicts that at baseline in 2012 57% of the IDU population will be vaccinated with up to 72% being vaccinated depending on the vaccination scenario implemented. These results are sensitive to the size of the IDU population in England and Wales and the average time served by an IDU during each prison visit. IDUs that do not receive HBV vaccine in the community are at increased risk from HBV infection. The HBV vaccination programme in prisons is an effective way of vaccinating this hard-to-reach population although vaccination coverage on prison reception must be increased to achieve this

    Dust-to-Gas Ratio and Metallicity in Dwarf Galaxies

    Full text link
    We examine the dust-to-gas ratio as a function of metallicity for dwarf galaxies [dwarf irregular galaxies (dIrrs) and blue compact dwarf galaxies (BCDGs)]. Using a one-zone model and adopting the instantaneous recycling approximation, we prepare a set of basic equations which describes processes of dust formation and destruction in a galaxy. Four terms are included for the processes: dust formation from heavy elements ejected by stellar mass loss, dust destruction in supernova remnants, dust destruction in star-forming regions, and accretion of heavy elements onto preexisting dust grains. Solving the equations, we compare the result with observational data of nearby dIrrs and BCDGs. The solution is consistent with the data within the reasonable ranges of model parameters constrained by the previous examinations. This means that the model is successful in understanding the dust amount of nearby galaxies. We also show that the accretion rate of heavy element onto preexisting dust grains is less effective than the condensation of heavy elements in dwarf galaxies.Comment: 14 pages LaTeX, 4 figures, to appear in Ap

    Outflows in Infrared-Luminous Starbursts at z < 0.5. I. Sample, NaI D Spectra, and Profile Fitting

    Full text link
    We have conducted a spectroscopic survey of 78 starbursting infrared-luminous galaxies at redshifts up to z = 0.5. We use moderate-resolution spectroscopy of the NaI D interstellar absorption feature to directly probe the neutral phase of outflowing gas in these galaxies. Over half of our sample are ultraluminous infrared galaxies that are classified as starbursts; the rest have infrared luminosities in the range log(L_IR/L_sun) = 10.2 - 12.0. The sample selection, observations, and data reduction are described here. The absorption-line spectra of each galaxy are presented. We also discuss the theory behind absorption-line fitting in the case of a partially-covered, blended absorption doublet observed at moderate-to-high resolution, a topic neglected in the literature. A detailed analysis of these data is presented in a companion paper.Comment: 59 pages, 18 figures in AASTeX preprint style; to appear in September issue of ApJ

    The Oxygen Abundance of Nearby Galaxies from Sloan Digital Sky Survey Spectra

    Full text link
    We have derived the oxygen abundance for a sample of nearby galaxies in the Data Release 5 of the Sloan Digital Sky Survey (SDSS) which possess at least two independent spectra of one or several HII regions with a detected [OIII]4363 auroral line. Since, for nearby galaxies, the [OII]3727 nebular line is out of the observed wavelength range, we propose a method to derive (O/H)_ff abundances using the classic Te method coupled with the ff relation. (O/H)_7325 abundances have also been determined, based on the [OII]7320,7330 line intensities, and using a small modification of the standard Te method. The (O/H)_ff and (O/H)_7325 abundances have been derived with both the one- and two-dimensional t_2 - t_3 relations. It was found that the (O/H)_ff abundances derived with the parametric two-dimensional t_2 - t_3 relation are most reliable. Oxygen abundances have been determined in 29 nearby galaxies, based on 84 individual abundance determinations in HII regions. Because of our selection methods, the metallicity of our galaxies lies in the narrow range 8.2 < 12 + log (O/H) < 8.4. The radial distribution of oxygen abundances in the disk of the spiral galaxy NGC 4490 is determined for the first time.Comment: 39 pages, 10 figures, 4 tables, accepted for publication in the Astrophysical Journa

    Metallicities of 0.3<z<1.0 Galaxies in the GOODS-North Field

    Full text link
    We measure nebular oxygen abundances for 204 emission-line galaxies with redshifts 0.3<z<1.0 in the Great Observatories Origins Deep Survey North (GOODS-N) field using spectra from the Team Keck Redshift Survey (TKRS). We also provide an updated analytic prescription for estimating oxygen abundances using the traditional strong emission line ratio, R_{23}, based on the photoionization models of Kewley & Dopita (2003). We include an analytic formula for very crude metallicity estimates using the [NII]6584/Halpha ratio. Oxygen abundances for GOODS-N galaxies range from 8.2< 12+log(O/H)< 9.1 corresponding to metallicities between 0.3 and 2.5 times the solar value. This sample of galaxies exhibits a correlation between rest-frame blue luminosity and gas-phase metallicity (i.e., an L-Z relation), consistent with L-Z correlations of previously-studied intermediate-redshift samples. The zero point of the L-Z relation evolves with redshift in the sense that galaxies of a given luminosity become more metal poor at higher redshift. Galaxies in luminosity bins -18.5<M_B<-21.5 exhibit a decrease in average oxygen abundance by 0.14\pm0.05 dex from z=0 to z=1. This rate of metal enrichment means that 28\pm0.07% of metals in local galaxies have been synthesized since z=1, in reasonable agreement with the predictions based on published star formation rate densities which show that ~38% of stars in the universe have formed during the same interval. (Abridged)Comment: AASTeX, 49 pages, 16 figures, accepted for publication in The Astrophysical Journa
    corecore