3,220 research outputs found

    How can large-scale twisted magnetic structures naturally emerge from buoyancy instabilities?

    Get PDF
    We consider the three-dimensional instability of a layer of horizontal magnetic field in a polytropic atmosphere where, contrary to previous studies, the field lines in the initial state are not unidirectional. We show that if the twist is initially concentrated inside the unstable layer, the modifications of the instability reported by several authors (see e.g. Cattaneo et al. (1990)) are only observed when the calculation is restricted to two dimensions. In three dimensions, the usual interchange instability occurs, in the direction fixed by the field lines at the interface between the layer and the field-free region. We therefore introduce a new configuration: the instability now develops in a weakly magnetised atmosphere where the direction of the field can vary with respect to the direction of the strong unstable field below, the twist being now concentrated at the upper interface. Both linear stability analysis and non-linear direct numerical simulations are used to study this configuration. We show that from the small-scale interchange instability, large-scale twisted coherent magnetic structures are spontaneously formed, with possible implications to the formation of active regions from a deep-seated solar magnetic field

    Modeling the radial abundance distribution of the transition galaxy ngc 1313

    Get PDF
    NGC 1313 is the most massive disk galaxy showing a flat radial abundance distribution in its interstellar gas, a behavior generally observed in magellanic and irregular galaxies. We have attempted to reproduce this flat abundance distribution using a multiphase chemical evolution model, which has been previously used sucessfully to depict other spiral galaxies along the Hubble morphological sequence. We found that it is not possible to reproduce the flat radial abundance distribution in NGC 1313, and at the same time, be consistent with observed radial distributions of other key parameters such the surface gas density and star formation profiles. We conclude that a more complicated galactic evolution model including radial flows, and possibly mass loss due to supernova explosions and winds, is necessary to explain the apparent chemical uniformity of the disk of NGC 1313Comment: 14 paginas, 4 figures, to be published in ApJ, apri

    The Diverse Infrared Properties of a Complete Sample of Star-Forming Dwarf Galaxies

    Full text link
    We present mid-infrared Spitzer Space Telescope observations of a complete sample of star-forming dwarf galaxies selected from the KPNO International Spectroscopic Survey. The galaxies span a wide range in mid-infrared properties. Contrary to expectations, some of the galaxies emit strongly at 8 micron indicating the presence of hot dust and/or PAHs. The ratio of this mid-infrared dust emission to the stellar emission is compared with the galaxies' luminosity, star-formation rate, metallicity, and optical reddening. We find that the strength of the 8.0 micron dust emission to the stellar emission ratio is more strongly correlated with the star-formation rate than it is with the metallicity or the optical reddening in these systems. Nonetheless, there is a correlation between the 8.0 micron luminosity and metallicity. The slope of this luminosity-metallicity correlation is shallower than corresponding ones in the B-band and 3.6 micron. The precise nature of the 8.0 micron emission seen in these galaxies (i.e., PAH versus hot dust or some combination of the two) will require future study, including deep mid-IR spectroscopy.Comment: 14 pages, accepted Ap

    Dust-to-Gas Ratio and Metallicity in Dwarf Galaxies

    Full text link
    We examine the dust-to-gas ratio as a function of metallicity for dwarf galaxies [dwarf irregular galaxies (dIrrs) and blue compact dwarf galaxies (BCDGs)]. Using a one-zone model and adopting the instantaneous recycling approximation, we prepare a set of basic equations which describes processes of dust formation and destruction in a galaxy. Four terms are included for the processes: dust formation from heavy elements ejected by stellar mass loss, dust destruction in supernova remnants, dust destruction in star-forming regions, and accretion of heavy elements onto preexisting dust grains. Solving the equations, we compare the result with observational data of nearby dIrrs and BCDGs. The solution is consistent with the data within the reasonable ranges of model parameters constrained by the previous examinations. This means that the model is successful in understanding the dust amount of nearby galaxies. We also show that the accretion rate of heavy element onto preexisting dust grains is less effective than the condensation of heavy elements in dwarf galaxies.Comment: 14 pages LaTeX, 4 figures, to appear in Ap

    Outflows in Infrared-Luminous Starbursts at z < 0.5. I. Sample, NaI D Spectra, and Profile Fitting

    Full text link
    We have conducted a spectroscopic survey of 78 starbursting infrared-luminous galaxies at redshifts up to z = 0.5. We use moderate-resolution spectroscopy of the NaI D interstellar absorption feature to directly probe the neutral phase of outflowing gas in these galaxies. Over half of our sample are ultraluminous infrared galaxies that are classified as starbursts; the rest have infrared luminosities in the range log(L_IR/L_sun) = 10.2 - 12.0. The sample selection, observations, and data reduction are described here. The absorption-line spectra of each galaxy are presented. We also discuss the theory behind absorption-line fitting in the case of a partially-covered, blended absorption doublet observed at moderate-to-high resolution, a topic neglected in the literature. A detailed analysis of these data is presented in a companion paper.Comment: 59 pages, 18 figures in AASTeX preprint style; to appear in September issue of ApJ

    The IntraCluster Medium: An Invariant Stellar IMF

    Get PDF
    Evidence supporting the hypothesis of an invariant stellar Initial Mass Function is strong and varied. The intra-cluster medium in rich clusters of galaxies is one of the few contrary locations where recent interpretations of the chemical abundances have favoured an IMF that is biased towards massive stars, compared to the `normal' IMF. This interpretation hinges upon the neglect of Type Ia supernovae to the ICM enrichment, and a particular choice of the nucleosynthesis yields of Type II supernovae. We demonstrate here that when one adopts yields determined empirically from observations of Galactic stars, rather than the uncertain model yields, a self-consistent picture may be obtained with an invariant stellar IMF, and about half of the iron in the ICM being produced by Type Ia supernovae.Comment: 9 pages, LateX (aaspp4 macro), including one postscript figure. Accepted, ApJ Letter
    • 

    corecore