18 research outputs found

    To what extent does surrounding landscape explain stand-level occurrence of conservation-relevant species in fragmented boreal and hemi-boreal forest?-a systematic review protocol

    Get PDF
    Background: Silviculture and land-use change has reduced the amount of natural forest worldwide and left what remains confined to isolated fragments or stands. To understand processes governing species occurrence in such stands, much attention has been given to stand-level factors such as size, structure, and deadwood amount. However, the surrounding matrix will directly impact species dispersal and persistence, and the link between the surrounding landscape configuration, composition and history, and stand-level species occurrence has received insufficient attention. Thus, to facilitate optimisation of forest management and species conservation, we propose a review addressing 'To what extent does surrounding landscape explain stand-level occurrence of conservation-relevant species in fragmented boreal and hemi-boreal forest?'.Methods: The proposed systematic review will identify and synthesise relevant articles following the CEE guidelines for evidence synthesis and the ROSES standards. A search for peer-reviewed and grey literature will be conducted using four databases, two online search engines, and 36 specialist websites. Identified articles will be screened for eligibility in a two-step process; first on title and abstract, and second on the full text. Screening will be based on predefined eligibility criteria related to a PECO-model; population being boreal and hemi-boreal forest, exposure being fragmentation, comparator being landscapes with alternative composition, configuration, or history, and outcome being occurrence (i.e., presence and/or abundance) of conservation-relevant species. All articles that pass the full-text screening will go through study validity assessment and data extraction, and be part of a narrative review. If enough studies prove comparable, quantitative meta-analyses will also be performed. The objective of the narrative review and the meta-analyses will be to address the primary question as well as six secondary questions, and to identify important knowledge gaps

    Rocky pine forests in the High Coast Region in Sweden: structure, dynamics and history

    No full text
    Almost all forests in Sweden are managed and only a small fraction are considered natural. One exception is low productive forests where, due to their limited economical value, natural dynamics still dominate. One example is the Scots pine (Pinus sylvestris L.) forests occurring on rocky and nutrient-poor hilltops. Although these forests represent a regionally common forest type with a high degree of naturalness, their dynamics, structure and history are poorly known. We investigated the structure, human impact and fire history in eight rocky pine forests in the High Coast Area in eastern Sweden, initially identified as good representatives of this forest type. This was done by sampling and measuring tree sizes, -ages, fire-scarred trees, as well as dead wood volumes and quality along three transects at each site. The structure was diverse with a sparse layer of trees (basal area 9 m(2) and 640 trees larger than 10 cm ha(-1)) in various sizes and ages; 13 trees ha(-1) were more than 300 years old. Dead wood (DW), snags and logs in all stages of decay, was present and although the actual DW (pine) volume (4.4 m(3) ha(-1)) and number of units (53 ha(-1)) was low, the DW share of total wood volume was 18% on average. Dead wood can be present for several centuries after death; we found examples of both snags and logs that had been dead more than 300 years. Frequent fires have occurred, with an average cycle of 40 years between fires. Most fires occurred between 1500-1900 and many of them (13) during the 1600s. However, fires were probably small since most fire years were only represented at one site and often only in one or a few samples. The rocky pine forests in the High Coast Area are representative of undisturbed forests with low human impact, exhibiting old-growth characteristics and are valuable habitats for organisms connected to sun-exposed DW. Management of protected rocky pine forests may well include small-scale restoration fires and the limited DW volumes should he protected

    Effect of Debarking Water from Norway Spruce (Picea abies) on the Growth of Five Species of Wood-Decaying Fungi

    No full text
    Norway spruce (Picea abies) debarking water is an aqueous extract obtained as waste from the debarking of logs at paper mills. The debarking water contains a mixture of natural compounds that can exhibit diverse biological activities, potentially including fungicidal activity on some species of wood-decaying fungi. Thus, we investigated the growth rates of such fungi on agar plates to which debarking water extracts had been added. The experiment included five wood-decaying fungi, viz. Gloeophyllum sepiarium, Oligoporus lateritius, Ischnoderma benzoinum, Junghuhnia luteoalba, and Phlebia sp. Growth reduction was observed for all species at the highest tested concentrations of freeze-dried and ethanol-extracted debarking water, the ethyl acetate-soluble fraction and the diethyl ether-soluble fraction. However, the magnitude of the effect varied between different species and strains of individual species. The brown-rot fungi G. sepiarium and O. lateritius were generally the most sensitive species, with the growth of all tested strains being completely inhibited by the ethyl acetate-soluble fraction. These results indicate that development of antifungal wood-protecting agents from debarking water could potentially be a way to make use of a low-value industrial waste

    Graphene Oxide and Lipid Membranes: Interactions and Nanocomposite Structures

    No full text
    We have investigated the interaction between graphene oxide and lipid membranes, using both supported lipid membranes and supported liposomes. Also, the reverse situation, where a surface coated with graphene oxide was exposed to liposomes in solution, was studied. We discovered graphene oxide-induced rupture of preadsorbed liposomes and the formation of a nanocomposite, bio-nonbio multilayer structure, consisting of alternating graphene oxide monolayers and lipid membranes. The assembly process was monitored in real time by two complementary surface analytical techniques (the quartz crystal microbalance with dissipation monitoring technique (QCM-D) and dual polarization interferometry (DPI)), and the formed structures were imaged with atomic force microscopy (AFM). From a basic science point of view, the results point toward the importance of electrostatic interactions between graphene oxide and lipid headgroups. Implications from a more practical point of view concern structure activity relationship for biological health/safety aspects of graphene oxide and the potential of the nanocomposite, multilayer structure as scaffolds for advanced biomolecular functions and sensing applications

    Antifungal efficiency of individual compounds and evaluation of non-linear effects by recombining fractionated turpentine

    No full text
    A combination between a reductive and a holistic assay was employed to investigate whole fraction, synergistic, antagonistic and individual compound efficacy of vacuumdistilled turpentine fractions against the economically important brown-rot fungus Coniophora puteana. The fungus was subjected to recombinations of turpentine fractions at a concentration of 1000 ppm. All combinations exhibited useful antifungal properties, but some antifungal mixtures showed a more pronounced effect than the expected level of inhibition. Synergistic effects by a two-fold factor and minor antagonistic effects were observed. Complete growth inhibition of C. puteana was observed by a fraction obtained after distilling 1 L turpentine at 111–177°C (0.5 mbar) as well as by mixing it with another fraction withdrawn at 70–79°C (0.5 mbar). Chemical compositions of distilled fractions were determined through GC–MS analysis and Orthogonal Partial Least Squares (OPLS) multivariate data analysis of GC–MS chromatograms was employed to zoom in on the most active compounds responsible for antifungal activity. Isomers of epicubenol, the hydrocarbon aromatic compound ar-himachalene and α-cadinol are suggested as effective antifungal compounds. In addition, a subsequent fractionation of the most effective fraction was performed with preparatory gas chromatography and subfractions showed similar or better efficacy than previously observed. Our work demonstrates the possibility to retain adequate synergistic antifungal efficiency and offers an opportunity to explore the effects of individual compounds originating from the same crude sample

    Appendix A. A table showing fungal species occurring on the 180 experimental logs during 1997–2002.

    No full text
    A table showing fungal species occurring on the 180 experimental logs during 1997–2002

    Effects of restoration fire on deadwood heterogeneity and availability in three Pinus sylvestris forests in Sweden

    Get PDF
    Restoration fires are increasingly used as a conservation tool in Sweden to recreate forests with characteristics of previous forests that were periodically disturbed by fires and promote firedependent species. Restoration fires can result in large inputs of fresh dead wood, but there are risks of losing some of the existing, pre-fire dead wood. To assess these counteracting effects we studied the heterogeneity and availability of dead wood before and after three restoration fires in boreal Scots pine forests. Specifically, we studied volumes of stumps, high stumps, snags and logs. The fires decreased the total volume of pre-fire dead wood (23-41%) and consumed logs in late decay stages (26-54%) to a higher extent than logs in earlier stages. The input of new fresh dead wood after the fires exceeded losses of pre-fire dead wood and resulted in a net increase of dead wood in all three sites. The added dead wood consisted of fresh snags killed by the fires. Fire also affected log characteristics: reducing their vegetation coverage (60-98%), decreasing their ground contact (4-50%) and increasing their surface area of charred wood (>50%). Such changes have important consequences for the micro environmental conditions inside logs, but have been rarely studied in relation to restoration fires. Our results show that restoration fire causes changes in dead wood availability and characteristics of logs. The results imply that ideally stands with low abundance of rare and heavily decayed wood substrates should be burned to optimize dead wood values. Alternatively, management practices should include protection of these substrates during restoration fires

    Graphene Oxide and Lipid Membranes: Interactions and Nanocomposite Structures

    No full text
    We have investigated the interaction between graphene oxide and lipid membranes, using both supported lipid membranes and supported liposomes. Also, the reverse situation, where a surface coated with graphene oxide was exposed to liposomes in solution, was studied. We discovered graphene oxide-induced rupture of preadsorbed liposomes and the formation of a nanocomposite, bio-nonbio multilayer structure, consisting of alternating graphene oxide monolayers and lipid membranes. The assembly process was monitored in real time by two complementary surface analytical techniques (the quartz crystal microbalance with dissipation monitoring technique (QCM-D) and dual polarization interferometry (DPI)), and the formed structures were imaged with atomic force microscopy (AFM). From a basic science point of view, the results point toward the importance of electrostatic interactions between graphene oxide and lipid headgroups. Implications from a more practical point of view concern structure–activity relationship for biological health/safety aspects of graphene oxide and the potential of the nanocomposite, multilayer structure as scaffolds for advanced biomolecular functions and sensing applications
    corecore