586 research outputs found
Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong.
BACKGROUND: Health authorities worldwide, especially in the Asia Pacific region, are seeking effective public-health interventions in the continuing epidemic of severe acute respiratory syndrome (SARS). We assessed the epidemiology of SARS in Hong Kong. METHODS: We included 1425 cases reported up to April 28, 2003. An integrated database was constructed from several sources containing information on epidemiological, demographic, and clinical variables. We estimated the key epidemiological distributions: infection to onset, onset to admission, admission to death, and admission to discharge. We measured associations between the estimated case fatality rate and patients' age and the time from onset to admission. FINDINGS: After the initial phase of exponential growth, the rate of confirmed cases fell to less than 20 per day by April 28. Public-health interventions included encouragement to report to hospital rapidly after the onset of clinical symptoms, contact tracing for confirmed and suspected cases, and quarantining, monitoring, and restricting the travel of contacts. The mean incubation period of the disease is estimated to be 6.4 days (95% CI 5.2-7.7). The mean time from onset of clinical symptoms to admission to hospital varied between 3 and 5 days, with longer times earlier in the epidemic. The estimated case fatality rate was 13.2% (9.8-16.8) for patients younger than 60 years and 43.3% (35.2-52.4) for patients aged 60 years or older assuming a parametric gamma distribution. A non-parametric method yielded estimates of 6.8% (4.0-9.6) and 55.0% (45.3-64.7), respectively. Case clusters have played an important part in the course of the epidemic. INTERPRETATION: Patients' age was strongly associated with outcome. The time between onset of symptoms and admission to hospital did not alter outcome, but shorter intervals will be important to the wider population by restricting the infectious period before patients are placed in quarantine
Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions.
We present an analysis of the first 10 weeks of the severe acute respiratory syndrome (SARS) epidemic in Hong Kong. The epidemic to date has been characterized by two large clusters-initiated by two separate "super-spread" events (SSEs)-and by ongoing community transmission. By fitting a stochastic model to data on 1512 cases, including these clusters, we show that the etiological agent of SARS is moderately transmissible. Excluding SSEs, we estimate that 2.7 secondary infections were generated per case on average at the start of the epidemic, with a substantial contribution from hospital transmission. Transmission rates fell during the epidemic, primarily as a result of reductions in population contact rates and improved hospital infection control, but also because of more rapid hospital attendance by symptomatic individuals. As a result, the epidemic is now in decline, although continued vigilance is necessary for this to be maintained. Restrictions on longer range population movement are shown to be a potentially useful additional control measure in some contexts. We estimate that most currently infected persons are now hospitalized, which highlights the importance of control of nosocomial transmission
Genetic map construction and QTL analysis of nitrogen use efficiency in spinach (Spinacia oleracea L.)
Hydrogen production from formic acid decomposition in the liquid phase using Pd nanoparticles supported on CNFs with different surface properties
The development of safe and efficient H2 generation/storage materials toward a fuel-cell-based H2 economy as a long-term solution has recently received much attention. Herein we report the development of preformed Pd nanoparticles supported on carbon nanofibers (CNFs) via sol-immobilisation and impregnation techniques as efficient catalysts for the liquid phase decomposition of formic acid to H2. We used CNFs as the preferred choice of support and treated at three different temperatures for the deposition of Pd nanoparticles. They were thoroughly characterised using XRD, XPS, SEM-EDX, TEM, Raman spectroscopy and BET. We observed that the Pd particle size, metal exposure and CNF graphitisation grade play an important role in catalytic performance. We found that Pd/CNFs prepared by the sol-immobilisation method displayed higher catalytic performance than those prepared by the impregnation method, due to the smaller Pd particles and high Pd exposure of the catalysts prepared by the first method. Moreover, we have shown that the best results have been obtained using CNFs with a high graphitisation degree (HHT). DFT studies have been performed to gain insights into the reactivity and decomposition of formic acid along two-reaction pathways on Pd(111), Pd(011) and Pd(001) surfaces
Exploiting Features and Logits in Heterogeneous Federated Learning
Due to the rapid growth of IoT and artificial intelligence, deploying neural
networks on IoT devices is becoming increasingly crucial for edge intelligence.
Federated learning (FL) facilitates the management of edge devices to
collaboratively train a shared model while maintaining training data local and
private. However, a general assumption in FL is that all edge devices are
trained on the same machine learning model, which may be impractical
considering diverse device capabilities. For instance, less capable devices may
slow down the updating process because they struggle to handle large models
appropriate for ordinary devices. In this paper, we propose a novel data-free
FL method that supports heterogeneous client models by managing features and
logits, called Felo; and its extension with a conditional VAE deployed in the
server, called Velo. Felo averages the mid-level features and logits from the
clients at the server based on their class labels to provide the average
features and logits, which are utilized for further training the client models.
Unlike Felo, the server has a conditional VAE in Velo, which is used for
training mid-level features and generating synthetic features according to the
labels. The clients optimize their models based on the synthetic features and
the average logits. We conduct experiments on two datasets and show
satisfactory performances of our methods compared with the state-of-the-art
methods
Preferences Single-Peaked on a Tree: Multiwinner Elections and Structural Results
A preference profile is single-peaked on a tree if the candidate set can be
equipped with a tree structure so that the preferences of each voter are
decreasing from their top candidate along all paths in the tree. This notion
was introduced by Demange (1982), and subsequently Trick (1989) described an
efficient algorithm for deciding if a given profile is single-peaked on a tree.
We study the complexity of multiwinner elections under several variants of the
Chamberlin-Courant rule for preferences single-peaked on trees. We show that
the egalitarian version of this problem admits a polynomial-time algorithm. For
the utilitarian version, we prove that winner determination remains NP-hard,
even for the Borda scoring function; however, a winning committee can be found
in polynomial time if either the number of leaves or the number of internal
vertices of the underlying tree is bounded by a constant. To benefit from these
positive results, we need a procedure that can determine whether a given
profile is single-peaked on a tree that has additional desirable properties
(such as, e.g., a small number of leaves). To address this challenge, we
develop a structural approach that enables us to compactly represent all trees
with respect to which a given profile is single-peaked. We show how to use this
representation to efficiently find the best tree for a given profile for use
with our winner determination algorithms: Given a profile, we can efficiently
find a tree with the minimum number of leaves, or a tree with the minimum
number of internal vertices among trees on which the profile is single-peaked.
We also consider several other optimization criteria for trees: for some we
obtain polynomial-time algorithms, while for others we show NP-hardness
results.Comment: 44 pages, extends works published at AAAI 2016 and IJCAI 201
Classification of Protein-Binding Sites Using a Spherical Convolutional Neural Network
The analysis and comparison of protein-binding sites aid various applications in the drug discovery process, e.g., hit finding, drug repurposing, and polypharmacology. Classification of binding sites has been a hot topic for the past 30 years, and many different methods have been published. The rapid development of machine learning computational algorithms, coupled with the large volume of publicly available protein–ligand 3D structures, makes it possible to apply deep learning techniques in binding site comparison. Our method uses a cutting-edge spherical convolutional neural network based on the DeepSphere architecture to learn global representations of protein-binding sites. The model was trained on TOUGH-C1 and TOUGH-M1 data and validated with the ProSPECCTs datasets. Our results show that our model can (1) perform well in protein-binding site similarity and classification tasks and (2) learn and separate the physicochemical properties of binding sites. Lastly, we tested the model on a set of kinases, where the results show that it is able to cluster the different kinase subfamilies effectively. This example demonstrates the method’s promise for lead hopping within or outside a protein target, directly based on binding site information
BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers
Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers.
Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided.
Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed.
Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background 
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
- …
