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ABSTRACT 

The analysis and comparison of protein binding sites aids various applications in the drug 

discovery process, e.g. hit finding, drug repurposing, and polypharmacology. Classification of 

binding sites has been a hot topic for the past 30 years and many different methods have been 

published. The rapid development of machine learning computational algorithms, coupled with 

the large volume of publicly available protein-ligand 3D structures, make it possible to apply deep 

learning techniques in binding site comparison. Our method uses a cutting-edge spherical CNN 

(convolutional neural network) based on the DeepSphere architecture to learn global 

representations of protein binding sites. The model was trained on TOUGH-C1 and TOUGH-M1 

data and validated with the ProSPECCTs datasets. Our results show that our model can (1) perform 

well in protein binding site similarity and classification tasks, (2) learn and separate the 

physicochemical properties of binding sites. Lastly, we tested the model on a set of kinases, where 

the results show that it is able to cluster the different kinase subfamilies effectively.  This example 

demonstrates the method’s promise for lead-hopping within or outside a protein target, directly 

based on binding site information. 
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INTRODUCTION 

The analysis of the three-dimensional (3D) structures and characteristics of proteins, especially 

their binding sites, is vital for the understanding of their biological function, as well as for drug 

development. Computer technology is widely used in the drug discovery process, e.g. small 

molecular virtual screening,1 structure-based drug design, docking of small molecules and proteins. 

Analysis of ligand-protein complexes in the Protein Data Bank (PDB)2 has shown that most 

ligands interact with specific binding sites on the targeted proteins, hence each binding site has a 

set of unique characteristics/properties or biological functions that distinguish it from other cavities 

on the protein surface.3 These properties enable the binding of specific ligands from the thousands 

of biomolecules that are found in the complex biological environment of a living cell.  

 

The characteristics of binding sites can be divided into two main categories: shape-related 

properties (e.g. volume, depth, geometric features, and flexibility) and physicochemical properties 

(e.g. electrostatic potential, hydrophobicity, hydrogen bond potential, and aromaticity).4 Analysis 

of ligand binding sites has significant applications in fields of molecular docking, drug-target 

interactions, compound design, ligand affinity prediction, and molecular dynamics.5 

 

The significant conservation of geometric and physicochemical properties of binding sites has 

enabled the development of binding site identification algorithms using protein structure without 

the requirement for ligand structural information.6-10 Comparison of the dissimilarities between 

evolutionarily related binding sites has been applied to study how small molecules target specific 

proteins. Conversely, similarities in the binding sites of unrelated proteins have also been 

identified.11,12 Such local binding site similarities can be helpful in the prediction of drug 
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promiscuity,13-15 drug repurposing,16,17 protein function classification, and the determination of 

off-target side effects.18 It can also help at the start of a drug discovery campaign, suggesting 

potential compound classes or molecular scaffolds from matched protein targets, especially if they 

are not evolutionarily related. 

 

The main hurdle when evaluating binding site similarity is the formulation of a quantitative 

definition of similarity. Unfortunately, no unique definition exists,18 predominantly due to intrinsic 

subjectivity. Predictably, the lack of a concrete definition has led to the development of a large 

selection of algorithms all varying with respect to the representation, featurization and numerical 

evaluation of similarity.14 These methods tend to be optimized based on small, hand-crafted 

datasets introducing various biases into the calculations.  

 

Recently, protein structural modelling has been greatly influenced by deep learning techniques due 

to its superior pattern recognition abilities,19 with applications ranging from protein structure 

prediction,20 protein-protein interaction prediction,21,22 protein-ligand binding affinity prediction23-

25 and binding site identification10,26-27 Deep-learning based methods give a good fit for protein 

modelling as biases associated with traditional analytical approaches are removed.28,29 

 

Convolutional neural networks (CNNs) have proved successful in image processing mainly due to 

their equivariance to translations in Euclidean space.30 The most natural adaptation of deep-

learning to 3D is thus to extend 2D-CNN using collections of 3D filters and voxel-grid 

representations of 3D objects. This type of volumetric model has been applied to protein-structure 

modelling tasks and more specifically to binding-site related objectives. Pu et al. developed 
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DeepDrug3D, 31 a 3D-CNN based model, with a demonstrated high accuracy to classify binding 

sites based the type of ligand they interact with (nucleotide and heme). While features from 

intermediate layers may potentially be used for similarity analysis, differentiation of unseen 

protein structures is not meaningful due to the directed nature of the learning objective. 

Simonovsky and Meyers introduced DeeplyTough;29 a 3D-CNN based model for pocket 

comparison. The learning objective is framed as a metric-learning task, taking inspiration from 

computer-vision techniques, where (binary) ground truth relationships are defined based on shared 

interactions with a structurally similar ligand. The authors used the TOUGH-M1 dataset32 for 

training since it represents the largest binding-site pair dataset constructed to date. This method 

performs consistently well across the ProSPECCTs benchmark datasets.11  

 

In general, 3D-CNNs have limitations inherent in their design, especially in terms of computational 

efficiency, where cost increases to the third power. Since voxels represent both occupied and 

unoccupied regions of the binding site, convolutions are performed over large areas of empty space. 

The large parameter space of 3D-CNNs also makes them susceptible to overfitting.33 As a result, 

most protein-modelling tasks use relatively shallow networks compared to state-of-the-art image 

processing networks. Furthermore, despite translational equivariance, invariance to other 

deformations, such as rigid rotations, are often addressed through costly data augmentation. 

Despite these inherent limitations, little emphasis has been placed on the exploration of alternative 

representations and models for binding-site based learning objectives. The MaSIF model22 used 

protein surface representations, applying geodesic convolutions to overlapping patches with a 

fixed geodesic radius. The process involves sampling a fixed number of surface patches and 
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mapping these to a geodesic polar coordinate system using a multidimensional scaling algorithm. 

The complexity of the model, however, limits its potential use in large scale applications. 

 

Recently a new paradigm of neural network architecture has been developed, leveraging spherical 

representations of data such as panoramic images, brain activity data, and LIDAR scans. 

Numerous spherical convolution neural networks (spherical CNNs) have been developed34-38 to 

infer labels or variables from these representations, with the advantage of equivariance to the 

rotation group 𝑆𝑂(3) . The approach has shown success in the field of computer-vision, 

demonstrating highly competitive results for shape classification and retrieval, especially when 

considering arbitrary rotations where other models fail to generalize.  It is worth noting that the 

spherical representation of 3D objects was used in shape analysis even before the advent of deep-

learning,39,40 due to the sphere’s inherent invariant properties. Indeed, spherical representations 

have been leveraged for local protein environment similarity evaluation, binding site classification 

and retrieval, and protein-ligand interaction prediction.41-45 These approaches commonly use 

spherical harmonic decomposition of spherical functions, representing geometric and 

physicochemical properties. 

 

In our study we use a graph based spherical CNN proposed by Perraudin et al.38 for binding site 

related tasks. The tasks include a classification and metric learning objective, trained and evaluated 

using established datasets: TOUGH-C131 and TOUGH-M1,32 respectively. In the metric learning 

case, the model is used to compute rotationally invariant binding site descriptors which can be 

evaluated efficiently in a pairwise manner using the Euclidean distance metric. We further evaluate 

the trained model on the ProSPECCTs benchmark dataset for analysis of generalizability to unseen 
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data and for convenient comparison with existing algorithms. Finally, we carry out a large-scale 

structure comparison of protein kinase ATP-binding sites using our trained model. The results 

show that our model can use local features to reveal similarities within different kinase families. 

We observe similarity trends within subfamilies, corresponding to active and other states,46 

emphasizing the sensitivity of our models to the biological features of the protein structures. The 

results demonstrate the potential of alternative binding site representations and deep-learning 

models. We hope that our work inspires the exploration of further representations, and their use in 

protein-structure applications. 

 

DATASETS 

Our model, which we will refer to as BindSiteS-CNN, computes vector representations of protein 

binding sites from shape and physicochemical features mapped to spherical projections of binding 

site surfaces using a spherical CNN. The model is trained with two different objectives; binding 

site classification and binding site representation learning. The classification task is trained and 

validated using the TOUGH-C1 dataset which contains protein binding sites labelled by the type 

of ligand they bind. The representation learning objective is trained with the binding site pair 

dataset TOUGH-M1 and validated using the ProSPECCTs binding site similarity benchmark 

datasets. Finally, a case study is performed using a set of protein kinases.  

 

Steroids from the TOUGH-C1 were not included as controls during the training process. There 

were 7,117 unique UniProt codes in TOUGH-M1 and 67 in the kinase set, with 30 overlaps 

between the two sets. As we were comparing against previously published results using the 

ProSPECCTs dataset, which is a common benchmark, we did not remove the overlaps to allow for 
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this comparison. Table 1 summaries the descriptions of the datasets used. 

 

Table 1.  Descriptions of Datasets 

Dataset Ligand 

type for 

subset 

Number 

of 

structures 

Use Classificati

on 

objective 

Representation 

Learning 

Objective 

Ref 

TOUGH-C1 Nucleotide 

Heme 

Control 

1553 

596 

1946 

training 

“ 

“ 

used 

“ 

“ 

not used 

“ 

“ 

32 

 Steroid 69 validation used x 32 

       

TOUGH-M1 Selected 

drug-like 

molecules 

7524 training x used 33 

       

ProSPECCTs Varies 

according 

to subset 

Varies 

according 

to subset 

validation x used 12 

       

Kinases Inhibitors 

such as 

ATP and 

small 

molecules 

1264 case study x used Table 

S.1 

 

Classification Objective - TOUGH-C1 

The daTaset tO evalUate alGoritHms for binding site Classification (TOUGH-C1) is a dataset for 

training and cross-validating protein binding site classification models. It consists of binding sites 

labelled with the type of ligand they interact with: either nucleotide, heme or control. A further 

validation set consisting of steroid binding sites forms an external validation set. Binding sites 

labelled ‘control’ form a subset of the TOUGH-M1 dataset containing only proteins with a 

sequence identity ≤ 40% and a Template Modelling (TM)-score47 ≤ 0.5 to any nucleotide-, heme-, 

and steroid-binding protein. The TM-score is an evaluation of the global structure similarity 

between a pair of proteins. The value ranges from 0 (totally dissimilar) to 1 (identical). Control 
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proteins are further filtered if they contain ligands with a Tanimoto coefficient > 0.5 to any ligand 

in the other subsets. The resultant dataset contains: 1,553 nucleotide-binding, 596 heme-binding, 

69 steroid-binding complexes, plus a control set with 1,946 complexes (Figure 1).  

 

Figure 1. Four classified subsets of TOUGH-C1. The ligands (yellow) and binding sites, as well 

as binding pockets (blue) of the example proteins (red), are shown. PDB IDs: heme-1A2S, 

nucleotide-1A0I, steroid-1AFS, control-1A3G. The control group represents an ensemble with 

ligands that are different from the three other subsets. 

 

Representation Learning Objective 

TOUGH-M1  

 

The daTaset tO evalUate alGoritHms for binding site Matching (TOUGH-M1) is a large dataset 

containing over one million labelled binding site pairs. The dataset represents the largest, most 
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balanced binding site similarity benchmark to date - two ideal properties for training machine 

learning based algorithms. During construction, important factors such as non-covalent binding of 

the protein to the ligand, drug-like properties of the ligand, sequence identities of the proteins, and 

similarities of the ligands were also considered. The positive subset of TOUGH-M1 contains 

505,116 protein pairs that are structurally dissimilar but with chemically similar ligands. The 

negative subset contains 556,810 protein pairs, where both protein structure and bound ligands are 

dissimilar.  

 

PROSPECCTS  

 

Protein Site Pairs for the Evaluation of Cavity Comparison Tools (ProSPECCTs) is an extensive 

collection of datasets built for the performance evaluation of binding site similarity comparison 

tools. It contains 10 benchmark sets, each crafted to test a different aspect of binding site similarity 

evaluation and to identify strengths and weaknesses within a given algorithm. As the scoring is 

unlikely to be consistent across all the datasets, the tools should be selected according to the given 

application and the information available in the various benchmarks.  

 

PROTEIN KINASES 

 

Protein kinases are among the most studied druggable targets, particularly in the field of oncology 

for the discovery of anti-cancer therapeutics.48 Their active site, the ATP binding site, exhibits 

remarkable structural variation across the proteins of this family, despite them all binding the same 

substrate. The medicinal effort during the past 20 years has seen a high diversity of synthetic ATP 

mimetics/inhibitors for different kinases. A drug’s specificity and selectivity are very important 

when designing and optimizing drugs towards specific targets during the drug discovery process.49 
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Especially challenging is the active form of the pocket. Many successful efforts have been 

published attempting to classify the structures and their interactions with different inhibitors.48,50   

 

Here we compared the active conformations of the ATP-binding sites using a pre-trained 

BindSiteS-CNN to test if our method can classify kinases using learned representations. The MOE 

(Molecular Operating Environment) software contains a well-defined protein kinase database, 

classified according to a widely accepted definition.50 For our study, binding sites containing 

complete activity annotation were selected for comparison. The entries from the MOE kinase set 

were selected if they contained a “DFG” motif (responsible for kinases activation) or an “alpha C” 

motif (defined by the spatial position of Lys72 which is secured by a salt-bridge from Glu91 and 

which can be “in” or “out”). In addition, only PDB structures of the whole protein, containing 

ligands and having active state information were retained (1,264 structures in total). The proteins 

were labelled based on group, family, and subfamily for further analysis. This dataset is provided 

in the supporting information (Table S1). Using cyclin-dependent kinase 2 (CDK2) as an example: 

the definition of labelling follows:  

 

Group: CMGC contains cyclin-dependent kinase (CDK), mitogen-activated protein kinase 

(MAPK), glycogen synthase kinase (GSK3), and CDC-like kinase (CLK). 

Family: CDK is a member of the cyclin-dependent kinase family (CDK) 

Subfamily: CDK2 
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METHODS 

Binding pocket surface preparation 

POCKET GENERATION 

Ligands tend to interact with proteins in depressed regions of the molecular surface, referred to as 

pockets or clefts. In enzymes, the largest pocket region commonly contains the active site.51 Many 

algorithms have been developed to identify these regions,6,7,9,52,53 using purely surface geometry 

or in combination with various chemical properties. Here SURFNET6 was used to locate pockets 

through the placement of spheres between pairs of protein atoms such that the radius of the sphere 

does not penetrate the van der Waals radius of any other atom. Clusters of overlapping spheres 

represent the 3D shape of each pocket. The surface of these spheres delineates a negative imprint, 

or image, of the pocket. 

 

POCKET FILTERING 

One problem with the SURFNET algorithm is that it often overestimates the size of ligand binding 

regions,52 and hence is not useful for shape comparisons. Morris et al.42 mitigated this issue by 

filtering the SURFNET spheres based on the conservation value of the nearest residue, where 

conservation is calculated using the ConSurf algorithm.54 However, this process is computationally 

expensive and requires being able to obtain suitable multiple sequence alignments. Instead, we 

filter the spheres using protein atoms that define the ligand-binding region of the pocket based on 

three criteria. Firstly, if a ligand is co-crystallised, protein atoms are selected within a radial 

threshold r of the ligand’s heavy atoms; secondly, if multiple ligands are co-crystallised in 

different PDB entries, the atom selection involves taking an ensemble of all the protein atoms in 

the different structures within a radial threshold r of the ligands’ heavy atoms; thirdly, if a protein 

has no ligand co-crystallised, binding-site atoms are calculated using FPocket.9 A convex-hull (the 
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smallest envelope containing all points) is built from the 3D coordinates of the selected protein 

atoms, and all spheres outside of its volume are discarded. The value of the radial threshold r was 

selected by a process of trial and error. A value of 6Å gave a reasonable representation of the 

pockets.  

 

POCKET SURFACE CALCULATION 

With the filtered SURFNET pocket spheres, the next step is to calculate the triangulated surface 

of those spheres, upon which a set of features can be projected. MSMS55 is used to generate the 

solvent excluded surface of the spheres with a probe radius of 1.5Å and a triangulation density of 

three vertices per Å2. A basic clean-up removes degenerate faces, duplicate faces, infinite values, 

and unreferenced vertices. Four iterations of Laplacian smoothing56 are also applied to remove 

noise from the surface generation process.  

 

Property Calculation 

The vertices of the computed pocket surface mesh are enriched with physicochemical information 

describing the hydrophobicity, electrostatic potential and interaction-based classification of 

surface-exposed atoms lining the pocket.  

 

INTERACTION-BASED CLASSIFICATION: PSEUDOCENTERS 

For each pocket lining residue, a set of generic pseudocenters is defined to represent five properties 

essential for forming interactions: hydrogen-bond donor (DON), acceptor (ACC), mixed 

donor/acceptor (DAC, e.g. side-chain nitrogen atoms in histidine ND1/NE2), aliphatic (ALI) and 

aromatic/PI (ARO, PI is any kind of pi interaction). The pseudocenters are constructed on binding 
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site residues centred at locations defining particular physicochemical features.4,57 Two 

vectors, v and r, are assigned to each centre, where v represents the average vector along which an 

interaction could be formed, and r is a normalized summation vector, aggregated from all vectors 

pointing from a particular pseudocenter to all surface points of a sphere of radius 3Å. The 

computed angle between v and r is used as a criterion for filtering. Table 2 summarizes the cut-

offs used for four of the five pseudocenter classifications and Figure 2 illustrates the procedure. 

Aliphatic centres (ALI) are not considered in the filtering procedure as interactions are assumed 

to be isotropic through van der Waals forces. Once constructed and filtered, pseudocenters are 

projected onto the pocket surface mesh vertices, where the closest pseudocenter to each vertex is 

considered. If there is no corresponding pseudocenter within a 3Å radius, the vertex is marked as 

NULL assuming that the vertex occupies the opening of the pocket. The final assignments are one-

hot encoded into a numerical vector representing the pseudocenter classification. The DAC 

pseudocenter is encoded as both DON and ACC rather than having its own class, resulting in a 

vector of four binary values. 

 

Table 2. The cut-offs used for four of the five pseudocenter classification 

Pseudocenter Type Cutoff (o) for angle between vectors r and v 

Donor  DON 100 

Acceptor  ACC 100 

Donor/Acceptor DAC 120 

Aromatic/PI  ARO 100 

 

 



14 

 

 

 

Figure 2: The exposure of an individual physicochemical property is determined using the vectors 

v and r. The vector v represents the direction of exposure where, in the case of the backbone N-

terminal nitrogen (donor), the vector is constructed along the projected N-H axis by bisecting the 

angle formed by the peptide bond (C-N-Cα). The vector r is a normalized summation vector 

calculated from all vectors pointing from the nitrogen atom to all neighboring surface (S) vertices 

within a spherical region defined by the radius dmax. The angle between the two vectors, ∠(𝑣 , 𝑟), 

determines whether the pseudocenter projects its property into the binding site cavity with the 

potential to form an interaction with a putative ligand (Table 2). Adapted from reference 4. 

 

HYDROPHOBICITY 

Hydrophobicity is commonly quantified using various residue or atomic level scales, where 

higher/lower values correspond to increased or decreased hydrophobicity. The values for an atomic 

level hydrophobicity scale58, and the partial charges for non-polar atoms and polar atoms, are -1 

(partial charge 0-0.25) and +1 (partial charge > 0.25), respectively. Surface vertices were assigned 
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a hydrophobicity value based on the average hydrophobicity of all atoms within a sphere of radius 

4.5Å, where the hydrophobicity values are scaled by their distance to the corresponding vertex. 

 

ELECTROSTATIC POTENTIAL 

Proteins were protonated using the REDUCE software.59 Electrostatic and partial charges were 

calculated with PDB2PQR.60 APBS (v.3.0)61 was used to calculate Poisson-Boltzmann 

electrostatics for each protein, using default parameters. Charge values were interpolated at each 

vertex using Multivalue, provided within the APBS software suite. Charges were capped to ±30 

and normalized between -1 and 1.  

 

Architecture - Spherical CNN 

Convolutions on the sphere are not as straightforward as convolutions in the Euclidean domain 

due to non-uniform samplings of the sphere. Spherical CNNs thus commonly implement 

convolutions on the sphere by realizing them in the spherical harmonic domain.30,35 While these 

operations are equivariant to rotations, they are computationally expensive. A different approach 

models the sampled sphere as an undirected graph connecting pixels according to the distance 

between them, where the distance between any two pixels approximates the geodesic distance 

between them.36,38,62 Laplacian-based graph convolutions applied to spherical graphs, approximate 

spherical convolutions with the benefit of increased efficiency but at the cost of exact equivariance. 

The DeepSphere architecture62 uses the graph CNN proposed by Defferrard et al,63 giving 

competitive performance and a reduced cost for 3D object recognition. SHREC’17 shape retrieval 

contest data64 and the DeepSphere architecture were used for this method. 
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SAMPLING 

For construction of a discretized sphere, a sampling scheme 𝒱 = {𝑥𝑖 ∈ 𝕊2}𝑖=1
𝑛  must be used 

containing n points assigned with the values of the signals to be processed. Due to the absence of 

a uniform sampling on the sphere, many sampling schemes have been proposed, each with 

different trade-offs. They include the equiangular,65 HEALPix(Hierarchical Equal Area 

isoLatitude Pixelisation)66 and icosahedral samplings. The HEALPix sampling scheme, used in 

this work, is based on the hierarchical subdivision of a rhombic dodecahedron, producing a 

discretization of the sphere where each pixel covers equal area. The lowest possible resolution 

corresponds to the base surface partition, with twelve equal-area pixels (𝑁𝑝𝑖𝑥). The resolution of 

the sampling changes according to the function: 𝑁𝑝𝑖𝑥 = 12𝑁𝑠𝑖𝑑𝑒
2  such that at 𝑁𝑠𝑖𝑑𝑒 = 16, 𝑁𝑝𝑖𝑥 =

3,072. 

 

GRAPH CONSTRUCTION 

From the HEALPix sampling, a weighted undirected graph is constructed 𝒢 = (𝒱, ℰ, 𝑤), where 𝒱 

is the set of vertices 𝑁𝑝𝑖𝑥 = |𝒱|, ℰ is the set of edges and w is the weighted adjacency matrix. In 

the corresponding graph, pixels are represented as vertices 𝑣𝑖  ∈  𝒱  and each vertex 𝑣𝑖  is 

connected to its neighbouring k vertices 𝑣𝑗 , forming a set of edges   (𝑣𝑖 , 𝑣𝑗) ∈  ℰ. The weighted 

adjacency matrix 𝑤 ∈ ℝ𝑁𝑝𝑖𝑥×𝑁𝑝𝑖𝑥 is then constructed as: 

𝑤𝑖𝑗 =  {𝑒−
1
4

𝑡‖𝑥𝑖−𝑥𝑗‖
2

 𝑖𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠,
0                                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

where 𝑥𝑖  is a vector encoding the 3-dimensional coordinates of pixel i, and t is a kernel width 

optimized to minimize equivariance error given k neighbours and the sampling resolution 𝑁𝑝𝑖𝑥. A 

weighting scheme is important for equivariance since the distances between pixels in each 
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sampling will not be equal. For full details of the weighting scheme the reader is directed to 

Defferrard et al.62 

 

GRAPH CONVOLUTIONS 

The graph convolution introduced by Defferrard et al. on spherical signals is defined as: 

ℎ(𝐿)𝑓 = (∑ 𝑎𝑘𝐿𝑘

𝐾

𝑘=0

) 𝑓, 

where K is the polynomial order corresponding to the filter size, 𝑎𝑘 are the coefficients optimised 

during training and L is the graph Laplacian matrix 𝐿 ∈ ℝ𝑛×𝑛. The combinatorial Laplacian is 

defined as 𝐿 = 𝐷 − 𝑊 , where W is the weighted adjacency matrix 𝑊 = (𝑤𝑖𝑗)  and D is the 

diagonal degree matrix 𝐷 = (𝑑𝑖𝑖) and 𝑑𝑖 = ∑ 𝑊𝑖𝑗𝑗  is the weighted degree of 𝑣𝑖 . 𝐿
𝑘  captures k-

neighbourhoods, where the entry (𝐿𝑘)𝑖𝑗  indicates the sum of length k weighted paths between 

vertices 𝑣𝑖  and 𝑣𝑗 , where the weight of a path is the multiplication of the edge weights along that 

path. Filtering with a polynomial convolution kernel can thus be seen from the vertex domain as a 

weighted linear combination of neighbouring vertices. The overall cost of the convolution reduces 

to 𝒪(𝑛)  through recursive application of 𝐿 , compared to 𝒪(𝑛3/2)  for the SHT based 

approaches.30,35 

 

POOLING  

Since the HEALPix sampling scheme is intrinsically hierarchical, down-sampling pixels is 

naturally simple since each subdivision divides a cell in an equal number of sub-cells. To down-

sample the graph aggregation of sub-cells with a permutation invariant function, such as the 

maximum or the average, is used to summarize information, producing a coarser graph. 
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Spherical Feature Maps 

The classification and retrieval of 3D shapes is a task that requires invariance to rotations. Proteins 

and their associated binding sites have no canonical orientation: rigid (isometric) transformations 

do not change their nature. Protein surfaces are commonly represented as triangulated meshes or 

point clouds, which are difficult to process in a rotation-invariant manner. We propose to project 

the pocket imprint surface onto a property attributed spherical map, which naturally allows rotation 

invariant treatment.  

 

The calculation of spherical maps begins with scaling the pocket surface to fit inside the unit-

sphere, and a ray-casting technique is utilised to project the pocket to the sphere. Rays emanate 

from pixels sampled on the sphere's surface toward the origin, and the point of intersection is 

recorded. From the point of intersection, a depth map is created using the distance from the surface, 

and the 𝑐𝑜𝑠 and 𝑠𝑖𝑛 of the angle formed between the ray and the surface-normal (face) forms two 

normal maps, describing the shape of the pocket surface.  

 

Physicochemical maps can then be calculated by aggregating properties at the three vertices 

adjacent to the intersected mesh face. For hydrophobicity and electrostatic potential, the 

aggregation is a simple average, while in the case of one-hot encoded pseudocenter classifications 

the logical “OR” operator is used as aggregation. The result of this process is a set of 9 spherical 

feature maps representing both shape and physicochemical properties of the pocket. Ignoring 

potential non-convexity of surfaces, we postulate that this projection will capture enough 

information to be useful for the proposed tasks. Maps are sampled using a HEALPix sampling 

with Nside = 16  ( 𝑛 = 12𝑁𝑠𝑖𝑑𝑒
2 = 3,072 𝑝𝑖𝑥𝑒𝑙𝑠 ), and a graph is built using 𝑘 = 20  nearest 



19 

 

neighbours with a kernel width t set to the corresponding optimum as used by Defferrard et al.63 

 

Training Details 

GENERAL ARCHITECTURE 

For all experiments we use the same base architecture consisting of four graph convolution (GC) 

layers  each followed by batch normalization, a ReLU activation and a max pooling layer that 

down-samples the spherical maps by a factor of four. A global average pooling is added along with 

a fully connected (FC) layer to produce a final embedding. Global average pooling ensures a 

rotationally invariant output computing the average across pixel level feature maps. The 

polynomials of the GC layers are all of order 𝐾 = 3 and the number of channels per layer is 32, 

64, 128, 256, respectively. The size of the feature map after average pooling and before it is passed 

to a fully connected layer is 256. 

 

CLASSIFICATION OBJECTIVE 

A multi-class classification training objective is defined using the TOUGH-C1 dataset where the 

objective is to discriminate between nucleotide, heme and control binding sites. A five-fold cross 

validation strategy is used to assess model generalizability, using the same splits defined by Pu et 

al.,31 with performance metrics averaged over the folds. Since the task requires the network to 

make a prediction based on three ligand types, the FC layer is set to an output size of three and a 

Softmax activation layer is added to the network. Softmax is defined as: 

𝑦𝑖 =
exp (𝑥𝑖)

∑ exp (𝑥𝑗)
𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑗=1

∈ [0,1], ∀𝑖 ∈ [𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠]  
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where 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠  is the number of classes to discriminate, outputting a discretised conditional 

distribution for the class based on the input and model parameters. The Adam algorithm67 is used 

to optimize the cross-entropy loss defined as: 

∑ 𝑦𝑖𝑙𝑜𝑔(𝑦�̂�)

𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑖=1

 

where 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 is the number of classes to discriminate, 𝑦 is the ground truth labels and �̂� is the 

predicted probability that an observation is of class i. The learning rate, weight decay, and 

𝛽1 and 𝛽2 hyperparameters are set to 0.05, 0.0, 0.9 and 0.999 respectively. To aid with 

convergence a stepped learning rate decay scheme is used where the learning rate is decayed by 

𝜆 = 0.1 every 25 epochs. We find empirically that batch sizes greater than 32 yield no performance 

benefit, and that the model converges in approximately 60 epochs, taking approximately 15 

minutes per fold.  

 

During training random rotations are applied to the inputs to enforce rotation invariance and 

increase the amount of data available to the model. To analyse the importance of certain features, 

multiple models are trained with different feature combinations. All experiments are evaluated 

using the Receiver Operating Characteristic (ROC) and the corresponding Area Under the Curve 

(AUC). The model is further evaluated using a set of steroid binding sites provided in the TOUGH-

C1 dataset. This dataset tests the model’s ability to make predictions on unseen data.  

 

REPRESENTATION LEARNING OBJECTIVE  

One of the objectives of using machine learning to estimate similarity metrics is to learn a 

generalizable function that maps a set of input features to a latent representation, while also 
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preserving the semantic distance in the input space. This form of learning is particularly useful 

where the number of target classes is either very large, the number of data points is small and/or 

only a small subset of classes is known while training. This learning paradigm aligns well with the 

binding-site similarity objective, where labelling is an expensive task and the number of classes is 

not known during training. For example, multiple ligands may bind to the same binding site and 

many of these will not be known for the purpose of labelling.  

 

A classification objective may not be the best approach for learning binding site representations 

since the objective enforces the formation of class-boundaries in latent space where unknown 

classes cannot be discriminated. A pairwise relationship between binding sites can be constructed 

on the basis of shared ligand binding, a representation learning objective in theory will produce 

representations which can be extended beyond inputs that have been seen during training. Since 

training models of this nature require large amounts of data, and the majority of binding site 

similarity data are small, handcrafted datasets, we follow Simonovsky & Meyers19 using the 

TOUGH-M1 dataset which represents the largest and most balanced dataset to date.  

 

The model’s objective is to output embedding vectors, rather than discretized probability 

distributions, where the vector space of structurally and chemically similar pockets is closer than 

that of dissimilar sites. Of particular importance in this paradigm is that each input is mapped 

independently to an embedding vector, and the subsequent similarity computation occurs in vector 

space. In this way, embeddings of graphs can be precomputed and indexed allowing fast nearest-

neighbour retrieval. Since an embedding vector output is expected, the FC layer is set to output a 

vector with a length of 256 and the Softmax activation is discarded.  
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Multiple loss functions have been proposed for the metric learning task in computer vision 

literature utilising pairs, triplets or N-sets of descriptors. Defining triplets or larger sets of inter-

relationships is problematic from a binding pocket point of view where ground-truth relationships 

for most pairs are unknown. Therefore, we only consider pairs of sites while training, minimizing 

a margin loss in the following equation. 

𝑦𝑑2 + (1 − 𝑦)max (0, 𝑚 − 𝑑)2 

y represents the ground truth relationship and 𝑦: 𝑦 equals 1 if the two pockets are labelled similar 

and 0 if not. d is the Euclidean distance between the two pocket features, 𝑓1, 𝑓2: 𝑑 = ‖𝑓1 − 𝑓2‖
2
.   

 

The loss encourages the features of similar pairs to lie close to each other in Euclidean space while 

negative pairs are separated by margin 𝑚 > 0. Controlling the value of the margin “loosens” or 

“tightens” the constraint. We set 𝑚 = 1.0  and minimize using the Adam algorithm with the 

learning rate, weight decay, and 𝛽1 and 𝛽2 hyperparameters set to 0.0005, 0.0, 0.9 and 0.999, 

respectively.  

 

During training, random rotation augmentations are added to both positive and negative pairs to 

enforce the rotation invariance of the architecture and to increase descriptor robustness. A robust 

data splitting strategy is essential when working with protein structure to avoid data leakage where 

a protein structure appears in both training and testing sets. To mitigate this issue, we follow the 

test/train splitting strategy as implemented in DeeplyTough, where protein structures sharing more 

than 30% sequence identity are allocated to the same sequence cluster, and then allocated to either 

a training or testing set, according to a random seed. This strategy is used in tandem with a 5-fold 
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cross-validation protocol for robust evaluation of generalizability. The maximum number of 

training pairs per epoch is constrained to a random selection of 25,000 in batches of size 128 to 

increase efficiency and prevent overfitting. The model converges in 50 epochs taking 

approximately two hours per fold.  

 

Using TOUGH-M1 and DeeplyTough, the ROC and the corresponding AUC is reported for a fair 

and consistent comparison with other similarity algorithms. The final model is further evaluated 

using the ProSPECCTs dataset where any proteins also occurring in TOUGH-M1 are removed 

before training according to the aforementioned criteria. To evaluate the model’s utility outside of 

computing pairwise similarity classifications, the trained model is used to cluster a set of proteins 

belonging to the kinase family.  

 

RESULTS AND DISCUSSION 

Classification Performance (TOUGH-C1) 

 

During model optimization, different combinations of spherical feature maps representing shape 

and physicochemical properties were used to identify the most discriminative features (Table 3). 

Each experiment was performed using a 5-fold cross-validation procedure with performance 

metrics averaged across the folds. For the first three tests, single physicochemical feature maps 

were considered (charge, hydrophobicity and pseudocenter features). The performance was 

acceptable, with pseudocenter features outperforming charge and hydrophobicity by a small 

margin.  
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The next three tests incorporated shape information (distance and angles) into the considered 

feature maps. Incorporation of shape information increased performance when paired with charge 

and hydrophobicity feature maps yet, surprisingly, when combined with pseudocenters, did not 

affect performance. The nucleotides class contains flexible molecules with diverse conformations, 

this may explain why, in this context, shape information adds little to performance compared with 

physicochemical features. The greater performance for heme binding sites may also be explained 

based on conformational flexibility; heme is considerably more rigid than nucleotides and thus 

heme binding sites also tend to be more structurally similar than nucleotide binding sites.  

 

For the final experiment all feature maps were considered, displaying the best performance out of 

all of the combinations, although only by a small margin. For the rest of the experiment, models 

trained using all feature maps were considered. ROC curves for the 5-fold cross validation using 

all feature maps are shown in Figure 3. 

 

Table 3. Test results of the classification task (TOUGH-C1) using different 

combinations of feature maps (shape and physicochemical). 

Input Features Mean ACC 

(combined) 

Mean AUC 

(heme) 

Mean AUC 

(nucleotide) 

charges 0.74 0.89 0.87 

hydrophobicity 0.72 0.93 0.88 

pseudocenters 0.78 0.94 0.89 
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shapes, charges 0.78 0.96 0.90 

shapes, hydrophobicity 0.75 0.95 0.89 

shapes, pseudocenters 0.79 0.94 0.89 

shapes, charges, hydrophobicity, 

pseudocenters 

0.81 0.97 0.93 

 

The performance of our models when classifying heme binding sites is comparable to those 

reported by DeepDrug3D; AUC 0.974, vs 0.987. However, for the classification of nucleotide-

binding sites, our obtained AUC is 0.93, which is less effective than that of DeepDrug3D (0.986). 

We attribute the performance loss to the spherical parametrization being more sensitive to binding 

site definition and conformational flexibility. One issue may be due to the ray-casting approach 

only being able to transform star-like shapes without a loss of information (information is only 

recorded from the first ray intersection with the molecular surface). This could potentially be 

remedied using a different spherical projection approach such as conformal mapping.68 With this 

approach, different shape features such as the heat kernel signature (HKS)69 could be used, 

resulting in less sensitivity to flexibility. DeepDrug3D was further evaluated on a set of steroid 

binding sites as a negative control set. BindSiteS-CNN achieves an accuracy of 0.86 on this 

particular set. We believe that an additional in-batch triplet loss may aid with separating classes 

further. 
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Figure 3.  ROC curves for a fivefold cross-validation evaluation on the TOUGH-C1 classification 

task (nucleotide vs heme vs control) 

 

Despite a slightly worse performance compared to DeepDrug3D, the results demonstrate that 

BindSiteS-CNN can learn task-specific binding site representations from feature attributed 

spherical projection of molecular surfaces. The model and representation are more 

computationally efficient than 3D voxel-based algorithms, requiring much less memory and 

training time (1hr 15 vs 3hr for a 5-fold cross validation). The learnt representation is also invariant 

to rotations, a highly desirable property, especially in the case of binding sites where no canonical 

orientation exists. 3D-CNNs do not share this property, hence DeepDrug3D requires 

standardization of the orientation of input structures through alignment of the longest, middle and 

shortest principal axes to the x, y, z Cartesian axis respectively. This alignment is calculated 

through the calculation of eigenvectors from the atom positions’ covariance matrix, which does 

not fully describe the geometric properties of the binding site, occasionally leading to different 



27 

 

principal axes for similar shapes. It is expected that when using such approximations for evaluating 

the similarity between binding sites, an inherent lack of rotation invariance will be a key issue.  

 

Representation Learning Performance (TOUGH-M1) 

 

Despite promising results on the classification task, the objective is limited to distinguishing 

between two classes of ligand and a control class. Such a simplistic task is not particularly useful 

in practice. Extension to multiple ligand classes poses a problem since there is not an even 

distribution of ligand classes in the PDB and a class-based distinction is not simple to construct 

since structural similarities between ligands does not lend itself to discrete class separations. We 

thus train BindSiteS-CNN with a metric learning objective which learns representations which 

reflect input similarities in metric space. This paradigm of learning minimizes distances between 

similar sites in metric space while maximizing the distance between dissimilar sites, thus 

eliminating the issue of requiring class distinctions as form of hard supervision.  

 

Using the combination of all spherical feature maps BindSiteS-CNN was trained using the 

TOUGH-M1 dataset as described where the pocket is determined through the pocket prediction 

method FPocket.9 BindSiteS-CNN achieves a mean AUC of 0.86±0.003 compared to 

DeeplyTough 0.91±0.003. Interestingly, when trained using the pocket defined as atoms within 

6Å of a bound ligand the performance increases to AUC 0.89±0.002, highlighting an increased 

sensitivity to the input pocket definition compared with volumetric methods. Compared with the 

next best performing methods, both deep learning-based methods significantly outperform other 

binding site similarity tools; SiteEngine (AUC 0.732), G-LoSA (0.694), PocketMatch (0.644), and 

APoc (0.644). As noted by Simonovsky and Meyers29, analysis of BindSiteS-CNN results indicate 
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that false negatives and false positives may indicate questionable ground-truth labels in the dataset, 

where shared binding of molecules may be attributed to the promiscuity of the molecule rather 

than an indication of pocket similarity. Furthermore, construction of negative pairs of binding sites 

is a particularly difficult task since the lack of a structural/experimental conformation of binding 

does not mean that binding related ligands is unfeasible. Ideally, negative pairs should be informed 

by activity measurements. However, a lack of such annotations (on a large scale) precludes this 

type of construction, especially in the case of machine-learning based approaches.  

 

ProSPECCTs Datasets 

 

Machine learning-based procedures are prone to reflecting biases present in training data, 

especially in the case of protein structural data where splitting strategies are not straightforward 

due to a non-discrete structural landscape. We expect BindSiteS-CNN to be less susceptible to 

data-leakage in this manner since only the surface of the pocket is considered, as opposed to a 

voxel grid over the entire pocket which consequently contains parts of the protein structure not 

involved in the binding of the ligand and hence may be considered not relevant to the protein-

ligand interaction. It is difficult to say what influence the non-relevant information may have on 

the final predictions.  

 

Due to these potential biases, methods must be evaluated on independently constructed datasets 

which may also vary in labelling procedure and binding site definition. We evaluate the trained 

BindSiteS-CNN model (predicted pocket parameterization) with the ProSPECCTs dataset. It 

consists of 10 separate datasets, and each designed to test a different aspect of a binding site 

similarity tool. Since ligand information is available in all datasets, pockets are defined by all 
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atoms within 6Å of the heavy atoms of a bound ligand. AUC scores are shown for each 

ProSPECCTs dataset in Table 4 and additionally visualised in Figure 4, which compares the rank 

our method against the ranks obtained by the 23 tools described in the DeeplyTough paper. 

 

Table 4. AUC values for BindSiteS-CNN on each of the 10 ProSPECCTs datasets, and its 

ranking compared to 23 other binding site similarity evaluation tools. 

 P1 P1.2 P2 P3 P4 P5 P5.2 P6 P6.2 P7 

Reference range* 0.55-

1.00 

0.74-

1.00 

0.70-

1.00 

0.47-

0.85 

0.46-

0.80 

0.54-

0.76 

0.52-

0.81 

0.44-

0.73 

0.50-

0.76 

0.64-

0.88 

BindSiteS-CNN 0.94 0.98 0.83 0.91 0.79 0.64 0.66 0.62 0.61 0.78 

Rank (in 24 tools) 11 11 20 1 2 11 4 6 10 11 

*The reference ranges and ranks are constructed from information accessed from ProSPECCTs 

and DeeplyTough. The rank is inclusive of BindSiteS-CNN. 

 

Datasets P1 and P1.2 are designed to assess the sensitivity of tools to the definition of a binding 

site. Dataset P1 assesses this through the comparison of binding sites extracted from proteins with 

identical sequences yet binding chemically distinct ligands. BindSiteS-CNN achieves an AUC of 

0.94, demonstrating a reasonable robustness to input definition. Dataset P1.2 restricts comparison 

to identical ligands. Promisingly, the AUC increases to 0.98, highlighting that the model is robust 

when considering identical proteins.  
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Dataset P2 uses ensembles of nuclear magnetic resonance (NMR) structures to assess sensitivity 

to binding site flexibility. While an AUC of 0.83 is not a bad result per-se, BindSiteS-CNN ranks 

as one of the lowest of the evaluated tools. This observation highlights an inherent sensitivity to 

conformational variability in a protein structure. Such a sensitivity may be desirable in certain 

applications. Sensitivity is further highlighted through the evaluation of datasets P3 and P4. These 

evaluate a tool’s ability to discriminate between sites which differ by five artificial mutations, with 

P3 considering mutations leading to a change in physicochemical properties, and P4 considering 

mutations leading to both a change in physicochemical properties and in shape. BindSiteS-CNN 

displays excellent performance here, with an AUC of 0.91 and 0.79 respectively, also ranking 1st 

and 2nd out of all tools for these tasks.  

 

P5 and P5.2 represent datasets for shape similarity analysis between ligand and binding site. The 

dataset contains 10 different ligand classes, with the P5.2 version also including phosphate binding 

sites. Performance on both sets ranks within the top 50% of tools (AUC 0.64-0.66), with the 

performance on P5.2 being ranked 4th. We attribute the better performance to the inclusion of 

phosphate in the negative-image surface parameterization, a single phosphate (PO4) should be easy 

to distinguish in this regard being such a small, almost spherical molecule. False positives on this 

particular set occur between similar nucleotides such as AMP and ATP, which often share similar 

shape and similar binding-site features. Indeed, tools that perform well on these datasets consider 

protein-ligand interactions or size explicitly and hence find it easier to distinguish such examples. 

The inclusion of a size-based scoring function increases performance significantly on this set, 

suggesting that sites may be differentiated by size alone rather than physicochemical features.70 
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P6 and P6.271 comprise pairs of dissimilar proteins, with similar local environments, binding to 

identical ligands. P6.2 excludes cofactors. BindSiteS-CNN again ranks in the top 50% (AUC 0.62-

0.61), although results on this set should be considered with a pinch of salt due to the small size of 

the dataset and unconvincing results from the majority of evaluated tools. The final dataset P7 

measures the recovery of known binding site similarities compiled from literature sources. With 

an AUC of 0.78, our method achieved a moderate performance ranked in the top 50% of all tools 

evaluated.  

 

Figure 4. AUC value comparison for BindSiteS-CNN. AUC of BindSiteS-CNN is in green, 

DeeplyTough is in blue (the same value as BindSiteS-CNN for P1.2), and the AUCs of other 

binding site similarity tools are in grey. All were calculated on subsets P1 to P7 of the ProSPECCTs 
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dataset benchmark collection. 

 

In summary, BindSiteS-CNN displays good performance across the ProSPECCTs datasets, its 

observed sensitivity to minor changes in physicochemical properties on the molecular surface 

highlights its potential usage applications. We propose that, with a consistent binding site 

definition, BindSiteS-CNN will be a good method for distinguishing protein binding-sites within 

a particular protein family based on small variations. The ability to distinguish between minor 

variations may have applications in inferring selectivity patterns in binding. It is also interesting 

to note that BindSiteS-CNN outperforms or matches the performance of DeeplyTough, the only 

other deep-learning based tool, in six out of ten of the ProSPECCTs datasets, despite being more 

efficient and not requiring extra loss functions to maintain stability while training. It would be 

interesting to see whether a meta-classifier using the outputs of multiple machine-learning based 

methods, with different input parameterizations, would improve retrieval performance.   

 

Classification of ATP binding sites of protein kinases 

The protein kinases are among the most studied druggable targets, especially in searching for 

anticancer therapies.72 Their active site, the ATP binding site, exhibits remarkable structural 

variation as observed in the large number of PDB structures, even though all the kinases have the 

same substrate ATP. The medicinal effort for the past 20 years has seen a high diversity of 

synthetic ATP mimetics/inhibitors for different kinases. 
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A drug’s specificity and selectivity are very important when targeting in the drug discovery 

process.49 Especially challenging is the active form of the pocket. Many successful efforts have 

been published trying to classify the structures and their interactions with inhibitors.48,49  

 

ATP is the natural substrate of the kinases. It binds in the deep catalytic cleft formed between the 

N- and C-lobes, with its adenine ring forming hydrogen bonds with the kinase. Kinase activity is 

regulated by a conserved activation loop, formed by the DFG and APE motifs, which is highly 

flexible. The term “DGF-in” refers to an active conformation, whereas “DFG-out” is an inactive 

one. The structures in the PDB reflect this flexibility in the wide range of conformations observed, 

and it is this flexibility that makes automatically classifying the kinases into their subfamilies such 

a challenge, as well as complicating efforts in drug design.46-50 

 

Here we compared the binding conformations of the protein kinase ATP-binding sites using 

BindSiteS-CNN to test if our method can classify kinases based on the learned features of their 

binding sites.  Our set of kinases contain either the ”DFGin/out” motif (for kinases activation) or 

the “alphaC in/out” conformation, as stated in the dataset section.  There are 1,264 structures in 

total, covering 26 families within 7 groups.  This information is available in the supplementary 

section. These structures are all co-crystallised with different inhibitors in the same binding site, 

such as ATP, and other chemical structures. The set of kinase structures includes (see Table S1) 

PDB structures of many different subfamilies as well as different structures of the same family.  

The set reflects the flexibility of the kinase binding sites. As the set also contains DFGin/out, the 

flexibility of the activation loop is also considered.  
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We have used UMAP73 to visualise the descriptor space learnt by BindSiteS-CNN. Firstly, we 

selected a subset of the inhibitors that are only ATP.  This was to test if our program can 

distinguish/classify subfamilies based on learnt features even though they have the same inhibitor, 

ATP. Figure 5a shows the clustering results of 10 subfamilies. The results show that even though 

they have the same ligand, their binding sites are different. A co-crystallised inhibitor/protein 

structure does not necessarily reflect that the binding site contains only features influenced by the 

bound compound. In addition, given the kinases binding sites are quite flexible among the 

subfamilies, as well as within the same subfamily, it was reassuring that our method can still group 

them into the correct subfamilies. This reflects that, even though the inhibitor is ATP, the flexibility 

of kinase binding sites is highly variable. The flexibility comes from different residues lining the 

binding site as well as the movement of the activation loop (DFG loop).  

 

In the next experiment, we wanted to evaluate if our method can cluster our set of kinase structures 

into family and group. The dendrogram (Figure 5b), resulting from a hierarchical clustering of the 

learnt descriptors, also reveals that the similarities are consistent with the identity of the kinase 

subfamilies, with only a small number of mislabelled examples. In Figure 6, the surface 

comparison is shown graphically for 2 proteins, DAPK and CDK2. The binding sites of these 

proteins occur in different clades in the dendrogram in Figure 5. The structures are aligned based 

on protein structure, and not using their inhibitors (ATP). In Figures 6a and 6b, the surfaces are 

quite different, despite similar amino acid composition. This difference can be attributed to a 

change of Leu320 (DAPK) to Phe320 (CDK2). In Figure 6c, the loops from the 2 structures cannot 

be overlayed well, reflecting again the flexibility of the kinase binding sites in different subfamilies. 

In general, this method can distinguish these features.   
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Figure 5. Results for kinases with bound ATP. a. UMAP visualization of learnt binding site 

descriptors. Examples labelled by subfamily. b. The dendrogram illustration of the hierarchical 

clustering of descriptors. 
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Figure 6.  Flexibility of ATP kinase binding sites. a. DAP-kinase-related protein DAPK (PDB 

2YAA). b. cyclin-dependent kinases 2 CDK2 (PDB 4EOJ). The colour of the protein surface is 

mainly based on hydrophobic (green) and polar and hydrogen bonding (purple). c. The overlap of 

the two proteins based on structural alignment. Note the most dissimilar amino acids are Leu320 

(DAPK) to Phe320 (CDK2). 

 

Next, we performed a UMAP dimensionality reduction calculation on all the structures. Figure 7 

shows the distribution of the descriptors for the 7 different groups of kinases. We can observe that 

the AGC, CAMK, and CK1 groups form tight clusters, whereas the CMGC and OPK groups  are 

more widely dispersed and more intermixed. The most dispersed distribution is that of the TK 

group. 
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Figure 7. UMAP visualization of learnt binding site descriptors of all selected kinases. 

Examples are labelled by definition of group. 
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Figure 8. Distance matrix of kinase embeddings. The colours represent the pairwise distances 

between learnt binding site descriptors: the red regions represent high similarity, whereas the blue 

regions high dissimilarity. The labels on the left identify the various kinase groups, with black 

squares showing the all-against-all distances within each group. The labels on the right identify 

the subfamilies of the CMGC group, with the green squares outlining the distances between their 

members. The yellow borders divide the two main states of CDK2 (active/inactive). 

 

Figure 8 shows the descriptor-based similarity of the structures. Here, the pairwise Euclidean 

distance between binding sites is used for similarity measurement. In Figure 8, the red regions are 

more similar (the darker red being the most similar) while the blue regions are more different (the 

darker blue is the most dissimilar). Figure 8 shows further analysis of the largest group we tested, 

CMGC, in green squares. The results show that our method can capture the internal similarity of 
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the same subfamily, despite there being sidechain flexibility in the binding site as each protein is 

represented by several PDBs. A previous comprehensive study of drug binding to different 

proteins has pointed out that binding between ligands and protein binding sites has a weak 

correlation to the conformational flexibility of the binding sites.13 Further observation of CDK2 

reveals a significant difference in the descriptors of the binding sites of the active and inactive 

forms. This is consistent with the very good sensitivity to physicochemical properties shown by 

BindSiteS-CNN and provides the possibility to apply our method to protein functional and 

characteristic analysis. 

 

 

CONCLUSIONS 

In this study, a spherical CNN applied to spherical projections of binding site surfaces was applied 

for the classification and similarity analysis of protein binding sites. Training on the TOUGH-C1 

dataset of protein binding sites demonstrated the ability of the graph-based spherical CNN to learn 

from binding pocket features. This also reflected how well the obtained surface features describe 

the protein binding sites. Parallel experiments based on different combinations of the feature types 

gave the best combination while verifying the contribution of the features.  

 

Metric learning models were trained using the TOUGH-M1 dataset to learn informative global 

descriptors of protein binding sites. The pairwise distances between these descriptors can be used 

as a basis for scoring the similarity of protein binding sites. The ability of the obtained models to 

analyse various aspects of binding site similarity was validated using the independent validation 

data sets of ProSPECCTs.  
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BindSiteS-CNN performed well when comparing binding sites with different physicochemical 

properties. Although our models using spherical CNNs do not outperform all 23 tools on the 

ProSPECCTs datasets, their ranking is better than most in nearly all. The results, therefore, provide 

a good proof of concept of the method.  

 

The kinase case study shows that the method has the potential to capture even the difference 

between different active states of the same kinase subfamily. The trained models could be used to 

search for locally similarity in binding sites of completely unrelated proteins. However, the AUC 

for our models on the P6 and P6.2 datasets are fairly low, albeit not the worst. This suggests our 

method gives less confident results when applied to unrelated proteins and is more effective within 

families rather than between families. Nevertheless, this still has great potential for applications in 

the analysis and prediction of the off-target side effects of drugs, drug repurposing, and protein 

function prediction. On the other hand, these models may also be used for large-scale inter- and 

intra-group analysis of protein families. This local characteristic based observation is expected to 

help discover new associations between different proteins in terms of physicochemical properties 

and biological functions in the future. 

 

DATA AND SOFTWARE AVAILABILITY  

The training datasets (TOUGH-C1, TOUGH-M1, and ProSPECCTs) are publicly available. The 

kinase set is downable in the supporting section. The method described here was implemented 

using Python 3.7 and the PyCharm Python Integrated Development Environment. The code and 

description of procedures are available on GitHub - https://github.com/Jing9558/BindSiteS-CNN 

https://github.com/Jing9558/BindSiteS-CNN
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