911 research outputs found

    Brightness temperature and attenuation statistics at 20.6 and 31.65 GHz

    Get PDF
    Attenuation and brightness temperature statistics at 20.6 and 31.65 GHz are analyzed for a year's worth of data. The data were collected in 1988 at Denver and Platteville, Colorado. The locations are separated by 49 km. Single-station statistics are derived for the entire year. Quality control procedures are discussed and examples of their application are given

    Preclinical detection of infectivity and disease-specific PrP in blood throughout the incubation period of prion disease

    Get PDF
    Variant Creutzfeldt-Jakob disease (vCJD) is a fatal neurodegenerative disorder characterised by accumulation of pathological isoforms of the prion protein, PrP. Although cases of clinical vCJD are rare, there is evidence there may be tens of thousands of infectious carriers in the United Kingdom alone. This raises concern about the potential for perpetuation of infection via medical procedures, in particular transfusion of contaminated blood products. Accurate biochemical detection of prion infection is crucial to mitigate risk and we have previously reported a blood assay for vCJD. This assay is sensitive for abnormal PrP conformers at the earliest stages of preclinical prion disease in mice and precedes the maximum infectious titre in blood. Not only does this support the possibility of screening asymptomatic individuals, it will also facilitate the elucidation of the complex relationship that exists between the ensemble of abnormal PrP conformers present in blood and the relationship to infectivity

    Planetary Trojans - the main source of short period comets?

    Get PDF
    We present a short review of the impact regime experienced by the terrestrial planets within our own Solar system, describing the three populations of potentially hazardous objects which move on orbits that take them through the inner Solar system. Of these populations, the origins of two (the Near-Earth Asteroids and the Long-Period Comets) are well understood, with members originating in the Asteroid belt and Oort cloud, respectively. By contrast, the source of the third population, the Short-Period Comets, is still under debate. The proximate source of these objects is the Centaurs, a population of dynamically unstable objects that pass perihelion between the orbits of Jupiter and Neptune. However, a variety of different origins have been suggested for the Centaur population. Here, we present evidence that at least a significant fraction of the Centaur population can be sourced from the planetary Trojan clouds, stable reservoirs of objects moving in 1:1 mean-motion resonance with the giant planets (primarily Jupiter and Neptune). Focusing on simulations of the Neptunian Trojan population, we show that an ongoing flux of objects should be leaving that region to move on orbits within the Centaur population. With conservative estimates of the flux from the Neptunian Trojan clouds, we show that their contribution to that population could be of order ~3%, while more realistic estimates suggest that the Neptune Trojans could even be the main source of fresh Centaurs. We suggest that further observational work is needed to constrain the contribution made by the Neptune Trojans to the ongoing flux of material to the inner Solar system, and believe that future studies of the habitability of exoplanetary systems should take care not to neglect the contribution of resonant objects (such as planetary Trojans) to the impact flux that could be experienced by potentially habitable worlds.Comment: 16 pages, 4 figures, published in the International Journal of Astrobiology (the arXiv.org's abstract was shortened, but the original one can be found in the manuscript file

    Evolving classification of intensive care patients from event data

    Get PDF
    Objective: This work aims at predicting the patient discharge outcome on each hospitalization day by introducing a new paradigm—evolving classification of event data streams. Most classification algorithms implicitly assume the values of all predictive features to be available at the time of making the prediction. This assumption does not necessarily hold in the evolving classification setting (such as intensive care patient monitoring), where we may be interested in classifying the monitored entities as early as possible, based on the attributes initially available to the classifier, and then keep refining our classification model at each time step (e.g., on daily basis) with the arrival of additional attributes. / Materials and methods: An oblivious read-once decision-tree algorithm, called information network (IN), is extended to deal with evolving classification. The new algorithm, named incremental information network (IIN), restricts the order of selected features by the temporal order of feature arrival. The IIN algorithm is compared to six other evolving classification approaches on an 8-year dataset of adult patients admitted to two Intensive Care Units (ICUs) in the United Kingdom. / Results: Retrospective study of 3452 episodes of adult patients (≥ 16 years of age) admitted to the ICUs of Guy’s and St. Thomas’ hospitals in London between 2002 and 2009. Random partition (66:34) into a development (training) set n = 2287 and validation set n = 1165. Episode-related time steps: Day 0—time of ICU admission, Day x—end of the x-th day at ICU. The most accurate decision-tree models, based on the area under curve (AUC): Day 0: IN (AUC = 0.652), Day 1: IIN (AUC = 0.660), Day 2: J48 decision-tree algorithm (AUC = 0.678), Days 3–7: regenerative IN (AUC = 0.717–0.772). Logistic regression AUC: 0.582 (Day 0)—0.827 (Day 7). / Conclusions: Our experimental results have not identified a single optimal approach for evolving classification of ICU episodes. On Days 0 and 1, the IIN algorithm has produced the simplest and the most accurate models, which incorporate the temporal order of feature arrival. However, starting with Day 2, regenerative approaches have reached better performance in terms of predictive accuracy

    Double marking revisited

    Get PDF
    In 2002, the Qualifications and Curriculum Authority (QCA) published the report of an independent panel of experts into maintaining standards at Advanced Level (A-Level). One of its recommendations was for: ‘limited experimental double marking of scripts in subjects such as English to determine whether the strategy would signi-ficantly reduce errors of measurement’ (p. 24). This recommendation provided the impetus for this paper which reviews the all but forgotten literature on double marking and considers its relevance now

    Intensive care unit (ICU)-acquired bacteraemia and ICU mortality and discharge:Addressing time-varying confounding using appropriate methodology

    Get PDF
    Background: Studies often ignore time-varying confounding or may use inappropriate methodology to adjust for time-varying confounding. Aim: To estimate the effect of intensive care unit (ICU)-acquired bacteraemia on ICU mortality and discharge using appropriate methodology. Methods: Marginal structural models with inverse probability weighting were used to estimate the ICU mortality and discharge associated with ICU-acquired bacteraemia among patients who stayed more than two days at the general ICU of a London teaching hospital and remained bacteraemia-free during those first two days. For comparison, the same associations were evaluated with (i) a conventional Cox model, adjusting only for baseline confounders and (ii) a Cox model adjusting for baseline and time-varying confounders. Findings: Using the marginal structural model with inverse probability weighting, bacteraemia was associated with an increase in ICU mortality (cause-specific hazard ratio (CSHR): 1.29; 95% confidence interval (CI): 1.02-1.63)and a decrease in discharge (CSHR: 0.52; 95% CI: 0.45-0.60). By 60 days, among patients still in the ICU after two days and without prior bacteraemia, 8.0% of ICU deaths could be prevented by preventing all ICU-acquired bacteraemia cases. The conventional Cox model adjusting for time-varying confounders gave substantially different results [for ICU mortality, CSHR: 1.08 (95% CI: 0.88-1.32); for discharge, CSHR: 0.68 (95% CI: 0.60-0.77)]. Conclusion: In this study, even after adjusting for the timing of acquiring bacteraemia and time-varying confounding using inverse probability weighting for marginal structura

    Infrared spectroscopy of the largest known trans-neptunian object 2001 KX76

    Full text link
    We report complete near-infrared (0.9-2.4 μ\mum) spectral observations of the largest know trans-neptunian objects (TNO) 28976 = 2001 KX76_{76} taken in two different nights using the new Near Infrared Camera Spectrometer (NICS) attached to the 3.56m Telescopio Nazionale Galileo (TNG). The spectra are featureless and correspond to a neutral colored object. Our observations indicate that the surface of 2001 KX76_{76} is probably highly evolved due to long term irradiation, and that collisional resurfacing processes have not played an important role in its evolution.Comment: 1 Latex file, 2 postscript files. A&A in pres

    A Minimum-Mass Extrasolar Nebula

    Full text link
    By analogy with the minimum-mass solar nebula, we construct a surface-density profile using the orbits of the 26 precise-Doppler planets found in multiple planet systems: Sigma = 2200 grams per square centimeter (a/1 AU)^- beta, where a is the circumstellar radius, and beta = 2.0 plus or minus 0.5. The minimum-mass solar nebula is consistent with this model, but the uniform-alpha accretion disk model is not. In a nebula with beta > 2, the center of the disk is the likely cradle of planet formation.Comment: 15 pages, including 2 figures. To appear in ApJ, 9/04 new version with prettier page layou

    Planet Formation in the Outer Solar System

    Get PDF
    This paper reviews coagulation models for planet formation in the Kuiper Belt, emphasizing links to recent observations of our and other solar systems. At heliocentric distances of 35-50 AU, single annulus and multiannulus planetesimal accretion calculations produce several 1000 km or larger planets and many 50-500 km objects on timescales of 10-30 Myr in a Minimum Mass Solar Nebula. Planets form more rapidly in more massive nebulae. All models yield two power law cumulative size distributions, N_C propto r^{-q} with q = 3.0-3.5 for radii larger than 10 km and N_C propto r^{-2.5} for radii less than 1 km. These size distributions are consistent with observations of Kuiper Belt objects acquired during the past decade. Once large objects form at 35-50 AU, gravitational stirring leads to a collisional cascade where 0.1-10 km objects are ground to dust. The collisional cascade removes 80% to 90% of the initial mass in the nebula in roughly 1 Gyr. This dust production rate is comparable to rates inferred for alpha Lyr, beta Pic, and other extrasolar debris disk systems.Comment: invited review for PASP, March 2002. 33 pages of text and 12 figure
    • …
    corecore