56 research outputs found

    PhytAMP: a database dedicated to antimicrobial plant peptides

    Get PDF
    Plants produce small cysteine-rich antimicrobial peptides as an innate defense against pathogens. Based on amino acid sequence homology, these peptides were classified mostly as α-defensins, thionins, lipid transfer proteins, cyclotides, snakins and hevein-like. Although many antimicrobial plant peptides are now well characterized, much information is still missing or is unavailable to potential users. The compilation of such information in one centralized resource, such as a database would therefore facilitate the study of the potential these peptide structures represent, for example, as alternatives in response to increasing antibiotic resistance or for increasing plant resistance to pathogens by genetic engineering. To achieve this goal, we developed a new database, PhytAMP, which contains valuable information on antimicrobial plant peptides, including taxonomic, microbiological and physicochemical data. Information is very easy to extract from this database and allows rapid prediction of structure/function relationships and target organisms and hence better exploitation of plant peptide biological activities in both the pharmaceutical and agricultural sectors. PhytAMP may be accessed free of charge at http://phytamp.pfba-lab.org

    Microbial Biogeography of Public Restroom Surfaces

    Get PDF
    We spend the majority of our lives indoors where we are constantly exposed to bacteria residing on surfaces. However, the diversity of these surface-associated communities is largely unknown. We explored the biogeographical patterns exhibited by bacteria across ten surfaces within each of twelve public restrooms. Using high-throughput barcoded pyrosequencing of the 16 S rRNA gene, we identified 19 bacterial phyla across all surfaces. Most sequences belonged to four phyla: Actinobacteria, Bacteriodetes, Firmicutes and Proteobacteria. The communities clustered into three general categories: those found on surfaces associated with toilets, those on the restroom floor, and those found on surfaces routinely touched with hands. On toilet surfaces, gut-associated taxa were more prevalent, suggesting fecal contamination of these surfaces. Floor surfaces were the most diverse of all communities and contained several taxa commonly found in soils. Skin-associated bacteria, especially the Propionibacteriaceae, dominated surfaces routinely touched with our hands. Certain taxa were more common in female than in male restrooms as vagina-associated Lactobacillaceae were widely distributed in female restrooms, likely from urine contamination. Use of the SourceTracker algorithm confirmed many of our taxonomic observations as human skin was the primary source of bacteria on restroom surfaces. Overall, these results demonstrate that restroom surfaces host relatively diverse microbial communities dominated by human-associated bacteria with clear linkages between communities on or in different body sites and those communities found on restroom surfaces. More generally, this work is relevant to the public health field as we show that human-associated microbes are commonly found on restroom surfaces suggesting that bacterial pathogens could readily be transmitted between individuals by the touching of surfaces. Furthermore, we demonstrate that we can use high-throughput analyses of bacterial communities to determine sources of bacteria on indoor surfaces, an approach which could be used to track pathogen transmission and test the efficacy of hygiene practices

    Office Space Bacterial Abundance and Diversity in Three Metropolitan Areas

    Get PDF
    People in developed countries spend approximately 90% of their lives indoors, yet we know little about the source and diversity of microbes in built environments. In this study, we combined culture-based cell counting and multiplexed pyrosequencing of environmental ribosomal RNA (rRNA) gene sequences to investigate office space bacterial diversity in three metropolitan areas. Five surfaces common to all offices were sampled using sterile double-tipped swabs, one tip for culturing and one for DNA extraction, in 30 different offices per city (90 offices, 450 total samples). 16S rRNA gene sequences were PCR amplified using bar-coded “universal” bacterial primers from 54 of the surfaces (18 per city) and pooled for pyrosequencing. A three-factorial Analysis of Variance (ANOVA) found significant differences in viable bacterial abundance between offices inhabited by men or women, among the various surface types, and among cities. Multiplex pyrosequencing identified more than 500 bacterial genera from 20 different bacterial divisions. The most abundant of these genera tended to be common inhabitants of human skin, nasal, oral or intestinal cavities. Other commonly occurring genera appeared to have environmental origins (e.g., soils). There were no significant differences in the bacterial diversity between offices inhabited by men or women or among surfaces, but the bacterial community diversity of the Tucson samples was clearly distinguishable from that of New York and San Francisco, which were indistinguishable. Overall, our comprehensive molecular analysis of office building microbial diversity shows the potential of these methods for studying patterns and origins of indoor bacterial contamination. “[H]umans move through a sea of microbial life that is seldom perceived except in the context of potential disease and decay.” – Feazel et al. (2009)

    Physical activity but not sedentary activity is reduced in primary Sjögren’s syndrome

    Get PDF
    The aim of the study was to evaluate the levels of physical activity in individuals with primary Sjögren’s syndrome (PSS) and its relationship to the clinical features of PSS. To this cross-sectional study, self-reported levels of physical activity from 273 PSS patients were measured using the International Physical Activity Questionnaire-short form (IPAQ-SF) and were compared with healthy controls matched for age, sex and body mass index. Fatigue and other clinical aspects of PSS including disease status, dryness, daytime sleepiness, dysautonomia, anxiety and depression were assessed using validated tools. Individuals with PSS had significantly reduced levels of physical activity [median (interquartile range, IQR) 1572 (594–3158) versus 3708 (1732–8255) metabolic equivalent of task (MET) × min/week, p < 0.001], but similar levels of sedentary activity [median (IQR) min 300 (135–375) versus 343 (223–433) (MET) × min/week, p = 0.532] compared to healthy individuals. Differences in physical activity between PSS and controls increased at moderate [median (IQR) 0 (0–480) versus 1560 (570–3900) MET × min/week, p < 0.001] and vigorous intensities [median (IQR) 0 (0–480) versus 480 (0–1920) MET × min/week, p < 0.001]. Correlation analysis revealed a significant association between physical activity and fatigue, orthostatic intolerance, depressive symptoms and quality of life. Sedentary activity did not correlate with fatigue. Stepwise linear regression analysis identified symptoms of depression and daytime sleepiness as independent predictors of levels of physical activity. Physical activity is reduced in people with PSS and is associated with symptoms of depression and daytime sleepiness. Sedentary activity is not increased in PSS. Clinical care teams should explore the clinical utility of targeting low levels of physical activity in PSS

    The miR-35-41 Family of MicroRNAs Regulates RNAi Sensitivity in Caenorhabditis elegans

    Get PDF
    RNA interference (RNAi) utilizes small interfering RNAs (siRNAs) to direct silencing of specific genes through transcriptional and post-transcriptional mechanisms. The siRNA guides can originate from exogenous (exo–RNAi) or natural endogenous (endo–RNAi) sources of double-stranded RNA (dsRNA). In Caenorhabditis elegans, inactivation of genes that function in the endo–RNAi pathway can result in enhanced silencing of genes targeted by siRNAs from exogenous sources, indicating cross-regulation between the pathways. Here we show that members of another small RNA pathway, the mir-35-41 cluster of microRNAs (miRNAs) can regulate RNAi. In worms lacking miR-35-41, there is reduced expression of lin-35/Rb, the C. elegans homolog of the tumor suppressor Retinoblastoma gene, previously shown to regulate RNAi responsiveness. Genome-wide microarray analyses show that targets of endo–siRNAs are up-regulated in mir-35-41 mutants, a phenotype also displayed by lin-35/Rb mutants. Furthermore, overexpression of lin-35/Rb specifically rescues the RNAi hypersensitivity of mir-35-41 mutants. Although the mir-35-41 miRNAs appear to be exclusively expressed in germline and embryos, their effect on RNAi sensitivity is transmitted to multiple tissues and stages of development. Additionally, we demonstrate that maternal contribution of miR-35-41 or lin-35/Rb is sufficient to reduce RNAi effectiveness in progeny worms. Our results reveal that miRNAs can broadly regulate other small RNA pathways and, thus, have far reaching effects on gene expression beyond directly targeting specific mRNAs

    Fatigue in primary Sjögren's syndrome (pSS) is associated with lower levels of proinflammatory cytokines: a validation study

    Get PDF
    Primary Sjögren’s syndrome (pSS) is a chronic autoimmune rheumatic disease with symptoms including dryness, fatigue, and pain. The previous work by our group has suggested that certain proinflammatory cytokines are inversely related to patient-reported levels of fatigue. To date, these findings have not been validated. This study aims to validate this observation. Blood levels of seven cytokines were measured in 120 patients with pSS from the United Kingdom Primary Sjögren’s Syndrome Registry and 30 age-matched healthy non-fatigued controls. Patient-reported scores for fatigue were classified according to severity and compared to cytokine levels using analysis of variance. The differences between cytokines in cases and controls were evaluated using Wilcoxon test. A logistic regression model was used to determine the most important identifiers of fatigue. Five cytokines, interferon-γ-induced protein-10 (IP-10), tumour necrosis factor-α (TNFα), interferon-α (IFNα), interferon-γ (IFN-γ), and lymphotoxin-α (LT-α) were significantly higher in patients with pSS (n = 120) compared to non-fatigued controls (n = 30). Levels of two proinflammatory cytokines, TNF-α (p = 0.021) and LT-α (p = 0.043), were inversely related to patient-reported levels of fatigue. Cytokine levels, disease-specific and clinical parameters as well as pain, anxiety, and depression were used as predictors in our validation model. The model correctly identifies fatigue levels with 85% accuracy. Consistent with the original study, pain, depression, and proinflammatory cytokines appear to be the most powerful predictors of fatigue in pSS. TNF-α and LT-α have an inverse relationship with fatigue severity in pSS challenging the notion that proinflammatory cytokines directly mediate fatigue in chronic immunological conditions

    Therapygenetics: using genetic markers to predict response to psychological treatment for mood and anxiety disorders

    Get PDF
    Considerable variation is evident in response to psychological therapies for mood and anxiety disorders. Genetic factors alongside environmental variables and gene-environment interactions are implicated in the etiology of these disorders and it is plausible that these same factors may also be important in predicting individual differences in response to psychological treatment. In this article, we review the evidence that genetic variation influences psychological treatment outcomes with a primary focus on mood and anxiety disorders. Unlike most past work, which has considered prediction of response to pharmacotherapy, this article reviews recent work in the field of therapygenetics, namely the role of genes in predicting psychological treatment response. As this is a field in its infancy, methodological recommendations are made and opportunities for future research are identified

    Complete Genome Sequence of the Aerobic CO-Oxidizing Thermophile Thermomicrobium roseum

    Get PDF
    In order to enrich the phylogenetic diversity represented in the available sequenced bacterial genomes and as part of an “Assembling the Tree of Life” project, we determined the genome sequence of Thermomicrobium roseum DSM 5159. T. roseum DSM 5159 is a red-pigmented, rod-shaped, Gram-negative extreme thermophile isolated from a hot spring that possesses both an atypical cell wall composition and an unusual cell membrane that is composed entirely of long-chain 1,2-diols. Its genome is composed of two circular DNA elements, one of 2,006,217 bp (referred to as the chromosome) and one of 919,596 bp (referred to as the megaplasmid). Strikingly, though few standard housekeeping genes are found on the megaplasmid, it does encode a complete system for chemotaxis including both chemosensory components and an entire flagellar apparatus. This is the first known example of a complete flagellar system being encoded on a plasmid and suggests a straightforward means for lateral transfer of flagellum-based motility. Phylogenomic analyses support the recent rRNA-based analyses that led to T. roseum being removed from the phylum Thermomicrobia and assigned to the phylum Chloroflexi. Because T. roseum is a deep-branching member of this phylum, analysis of its genome provides insights into the evolution of the Chloroflexi. In addition, even though this species is not photosynthetic, analysis of the genome provides some insight into the origins of photosynthesis in the Chloroflexi. Metabolic pathway reconstructions and experimental studies revealed new aspects of the biology of this species. For example, we present evidence that T. roseum oxidizes CO aerobically, making it the first thermophile known to do so. In addition, we propose that glycosylation of its carotenoids plays a crucial role in the adaptation of the cell membrane to this bacterium's thermophilic lifestyle. Analyses of published metagenomic sequences from two hot springs similar to the one from which this strain was isolated, show that close relatives of T. roseum DSM 5159 are present but have some key differences from the strain sequenced
    corecore