18,532 research outputs found

    Probing double parton scattering via associated open charm and bottom production in ultraperipheral pApA collisions

    Full text link
    In this article, we propose a novel channel for phenomenological studies of the double-parton scattering (DPS) based upon associated production of charm ccˉc\bar{c} and bottom bbˉb\bar{b} quark pairs in well-separated rapidity intervals in ultra-peripheral high-energy proton-nucleus collisions. This process provides a direct access to the double-gluon distribution in the proton at small-xx and enables one to test the factorised DPS pocket formula. We have made the corresponding theoretical predictions for the DPS contribution to this process at typical LHC energies and beyond and we compute the energy-independent (but photon momentum fraction dependent) effective cross section.Comment: 15 pages, 7 figs., 1 table. One fig. added. Version accepted for publication at EPJ

    Nearly inviscid Faraday waves in containers with broken symmetry

    Get PDF
    In the weakly inviscid regime parametrically driven surface gravity-capillary waves generate oscillatory viscous boundary layers along the container walls and the free surface. Through nonlinear rectification these generate Reynolds stresses which drive a streaming flow in the nominally inviscid bulk; this flow in turn advects the waves responsible for the boundary layers. The resulting system is described by amplitude equations coupled to a Navier-Stokes-like equation for the bulk streaming flow, with boundary conditions obtained by matching to the boundary layers, and represents a novel type of pattern-forming system. The coupling to the streaming flow is responsible for various types of drift instabilities of standing waves, and in appropriate regimes can lead to the presence of relaxations oscillations. These are present because in the nearly inviscid regime the streaming flow decays much more slowly than the waves. Two model systems, obtained by projection of the Navier-Stokes-like equation onto the slowest mode of the domain, are examined to clarify the origin of this behavior. In the first the domain is an elliptically distorted cylinder while in the second it is an almost square rectangle. In both cases the forced symmetry breaking results in a nonlinear competition between two nearly degenerate oscillatory modes. This interaction destabilizes standing waves at small amplitudes and amplifies the role played by the streaming flow. In both systems the coupling to the streaming flow triggered by these instabilities leads to slow drifts along slow manifolds of fixed points or periodic orbits of the fast system, and generates behavior that resembles bursting in excitable systems. The results are compared to experiments

    Yielding of rockfill in relative humidity-controlled triaxial experiments

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11440-016-0437-9The paper reports the results of suction controlled triaxial tests performed on compacted samples of two well graded granular materials in the range of coarse sand-medium gravel particle sizes: a quartzitic slate and a hard limestone. The evolution of grain size distributions is discussed. Dilatancy rules were investigated. Dilatancy could be described in terms of stress ratio, plastic work input and average confining stress. The shape of the yield locus in a triaxial plane was established by different experimental techniques. Yielding loci in both types of lithology is well represented by approximate elliptic shapes whose major axis follows approximately the Ko line. Relative humidity was found to affect in a significant way the evolution of grain size distribution, the deviatoric stress-strain response and the dilatancy rules.Peer ReviewedPostprint (author's final draft

    Dimensional effects on magnetic properties of Fe-Si steels due to laser and mechanical cutting

    Get PDF
    Microstructural deterioration near the cut line and presence of residual stresses both affect the magnetic properties of cut parts. In this paper, the differences between microstructural deterioration resulting from mechanical and laser cutting as well as the sample size effects observed upon hysteresis will be discussed. It will be shown that the underlying mechanism for changes in magnetic properties due to mechanical cutting is distinct from that of laser cutting

    Correlation between microstructure, texture, and magnetic induction in nonoriented electrical steels

    Get PDF
    Although it is well known that the magnetic induction of electrical steels at a given applied field critically depends on the microstructure and on the present crystallographic texture, there is still no quantitative model to describe this relation in the whole range of inductions. In this paper, the existing different models for the dependence of B-8, B-25, and B-50 on the texture intensities will be evaluated in detail. Finally, a more general model is proposed for the dependence of the magnetic induction at a given applied field as a function of the mean grain size, a texture related parameter and the Si content of the material
    • …
    corecore