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Abstract. In the weakly inviscid regime parametrically driven surface gravity-capillary waves
generate oscillatory viscous boundary layers along the container walls and the free surface.
Through nonlinear rectification these generate Reynolds stresses which drive a streaming flow
in the nominally inviscid bulk; this low i turm advects the waves responsible for the boundary
layers. T'he resulting systent is described by amplitude equations coupled 1o a Navier-Stokes-like
equation for the bulk streaming flow, with boundary conditions obtained by matching to the
boundary layers, and represents a novel type of pattern-forming system.

The coupling to the streaming flow is responsible for various types of drift instabilitios of
glanding waves, and in appropriale regiines can lead Lo the presence ol relaxations oscillations.
These are present hecause in the nearly inviscid regime the streaming flow decays much more
slowly than the waves. Two model systems, obtained by projection of the Navier-Stokes-like
equation onto the slowest mode of the domain, are examined to clarify the origin of this behavior.
Tn the first the domain is an elliptieally distoried cylinder while in the sccond it is an almost
gquare rectangle. Tn hoth eases the foreed symmetry hreaking results in a nonlinear competition
between two nearly degenerate oscillatory wmodes, This interaction destabilizes standing waves
at small amplitudes and amplifies the role played by the streaming flow. In both systems the
coupling to the streaming flow triggered by these instabilities leads to slow drifts along slow
manifolds of fixed points or periodic orbits of the fast systeom, and gencrates hehavior that
reseribles hursting in excitable systeins, The results are compared Lo experiments,

1. Introduction

In recent work on parametrically driven Faraday waves we have shown that in the presence of small
viscosity (C, = v(gh® | Th/ P12 & 1) the waves couple to a streaming flow driven in oscillatory
viscous boundary layers at rigid walls and the free surface [21]. This flow in turn advects the waves
responsible for the oscillatory boundary layers. While the detailed description of this feedback loop
(and the derivation of the asymptotically exact equations} is involved, it is known [14, 21] that this
coupling is responsible for different types of drift instabilities of the waves, instabilities that have
been observed in experiments in annular containers [3] but are absent from the theory when the
coupling to the streaming flow is neglected. Subsequent work by Higuera, Vega and Knobloch ([8])
pointed out that the influence of the streaming flow s greatly enhanced for Faraday waves that are
not of standing wave type, and derived the equations describing the coupling between the waves and
the streaming flow that results. [t turns out that the simplest way to destabilize standing waves is
to perturb the shape of the container from one of high symmetry to one of lower symumetry. Such a
perturbation praduces a competition between almost degenerate modes, and introduces secondary



bilurcations into the system Lhat destabilize Lhe primary standing waves already al small amplitude.
The dynamies thal resull can be described by weakly nonlinear theory. Of particular interest is the
presence of relaxation oscillalions in this regime thal resemble the “bursters’ studied in the context
ol pancrealic S-cells or models of firing neurons. Relaxation oscillations of this type are unusual in
fluid mechanics [2], and this alone makes the nearly inviseid Faraday system of great interest.

In this paper we deseribe two examples [or this behavior. We congider (irst an clliplical conlainer
ol almost circular cross-section, and summarize the main resulls obtained {rom & carclul study
ol a system ol model equalions derived [rom the coupled amplitude-gireaming [low equalions in a
particular asymplotic limil. These results indicatle that the presence of relaxation oscillations in Chis
system can be attributed 1o the disparity belween the decay times of free surlace gravity-capillary
waves and the streaming [low thal prevails in the nearly inviscid regime. A related study, of a
reclangular container of almost square cross-section, alse reveals relaxation ogcillalions, but this
time it is possible o relate the results to experiments [19]. Some of our results have been published
clsewhere [6].

2. Cylindrical domain
The equations derived in [8] for nearly inviseid Faraday waves in an almost circular domain are
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where AL are the (complex) amplitudes of cleckwise and counterclockwise rotating waves and u
denotes the (incompressible) streaming flow (V- u = 0). In these equations £ is a known constant,
and the quantities T', A and @ arce propertional to the detuning, the cllipticity ol the container and
the lorcing amplitude, respectively. The detuning takes inlo a(.(.ount. the mismatch belween hall
the loreing [requency and the natural [requency ol inviscid oscillations, and includes the [requency
shill duc to viscosily, while A is proportional Lo the {requency dillerence w — we beiween inviscid
oscillalions along Lhe Lwo principal axes of the conlainer. The time has been scaled by Lhe viscous
damping time for a cylinder of height k, viz. 4 = Afl(;*,1/2+ﬁf2(_;‘y, where () = u(gh?%—’!’h/p)*l/z < 1,
and v and 7 are known constants that depend on the excited mode. Here T denotes the surface
tension, p is the fluid density, and v is the kinematic viscosity. This scaling is responsible for the
appearance of the Reynolds number

Re = (O + 10/, (3)

in the Navier-Stokes-like equation (2} for the streaming flow. Like all other quantities in these
equations the Reynolds number is formally of order one |13, 21|, but can in fact be both large
and small. l'or example, if the container is not deep the damping of the waves is dominated by the
Stokes boundary layers and He ~ 7/ \/_q , while in & deep container both terms (i.e., v V2 72l )
contribute to the damping. Caleulations show that for the first few modes yo/7; ~ 102 [13] so that
systems with Cj, < 1071, such as water or silicon oils in centimeter-deep containers, have Reynolds
numbers e (1 /\/C . In these systems, therefore, the streaming is enly weakly damped and
hence is easily driven by time-averaged [Reynolds stresses.
Equation (2) also contains a Stokes drift term G{A, A_) given by

G = (1A -
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and is Lo be solved subject to the boundary conditions
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at all rigid surfaces (i.e., r = R or z = —1), and
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at the free surface z = (. Here ng denctes the outward unit normal, and R is the aspect ratio
of the cylinder. The scalar functions @1,. .. w5 and g appearing in these equations are all real,
independent. of A, and computable in terms of the components of the excited inviscid linear maode
of the system [8]. For a pinned contact line the coefficients v and 2 in (3) and the corresponding
inviscid eigenfunctions have been calculated by Martel, Nicolds and Vega ([13]), while Miles ([15])
has caleulated the coeflicients aq and s of the nonlinear terms for a particular case with a free
comtact line. For i = L4.1lemn and Bh = 9.24cm we have aq = 04, g = —2.538,

It is important to observe that in these equations all coeflicients are formally of order one. In
particular the forcing of the streaming flow remains finite even in the limit of vanishing viscosity, as
originally noted by Schlichting ([17]) and Longuet-Higging ([12]). The boundary conditions {1), {5}
show that its magnitude is in general of order (|A¢|%,|A_]?), and hence of order u — g, where uy is
the threshold for the onset of the Faraday instability, Note also that a nonvanishing streaming How
is associated even with standing waves (|Ay| = |A-|), although for such waves u - ep changes sign
under reflection & — —6€ and the last term in Eq. (1) vanishes., Thus for standing waves the streaming
flow decouples from the amplitudes, although it may be involved in trigeering drift instabilities of
such waves.

2.1. Circular cylinder
In a circular eylinder (A = 0) the streaming (low decouples [rom the equations for the amplitudes.
To sce this we consider waves wilh azimuthal wavenumber m, and write

A . Bie—mo,_,(r)
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These cqualions provide the simplest description of nearly inviscid Faraday waves in O(2)-symmelric
systems, and all their solulions converge Lo rellection-symmeliric steady states ol the form

Bj: _ R“cimﬂg , (n—{r)

i.e., to standing waves, and only the spatial phase (4 of these waves couples to the streaming flow.
This coupling is described by K. (6) together with

A/dr —ux (Vxu)=—Vp | Re ltAu, V. u=10, (8)
an equalion forced by the boundary condilions

u-= 2[1’,%[901 cos[2m{f — Oy)] 1| ol x ey — ‘ZHS«;:;; sin[2m{0 — dy}|ey (N



on ¢ither ¢ = R or 2 = —1, and subject Lo the additional requirement
u-e; = (u/dz) e, = (/dz) e =10 {10}

at z 0. The (constant) arbitrary phase 0f appearing in (7} has been eliminated by an appropriate
rotation. Fqs. (6), (8)-(10) possess, for all 122, reflection-symmetric steady states of the form
u  u¥(r,0—00.2), o constant, with u®(r,0,2) -es  —u’(r,—0,2) - eg; note that there is a
whole family of such states, obtained by an arbitrary rotation. lor small /i3 the existence and
(orbital} asymptotic stability of these states can be ascertained analvtically. It turns out that
these states can lose stability at finite Hy either through a parity-breaking bifurcation giving rise to
uniformly drifting spatially uniform standing waves {such as those observed in I'araday experiments
in annnlar containers |3|), or via a symmetry-breaking Hopf bifurcation that produces so-called
direction-reversing waves [11]. In the latter case the standing waves drift alternately clockwise and
counterclockwise but their mean location remains fixed. Solutions of this type have been found
in a two-dimensional Cartesian geometry with periodic boundary conditions, and represent the
instability that sets in at smallest amplitude |[14]. Neither instability is present if the coupling to
the streaming flow is ignored.

2.2. Nearly circular cylinder
As soon as A / 0 the symmetry of the problem is reduced to the group 1)y generated by

A ——Ay, =817 Ay e A, 8> -8, u-ep— —u ey,

and the streaming flow couples to the amplitudes as well. The description of this coupling becomes
simpler when the effective Reynolds number ol the streaming flow is small (i.c., g — go iz small) lor
then the non-potential term u x (V x u) in Eq. (2} is negligible. In fact this approximation remains
qualitatively useful even lor larger Reynolds numbers. The absence of nonlincar terms allows us 1o
isolale the part of the streaming flow velocity that coniributes Lo the nonlocal term in Tig. {1}, by
decomposing the streaming flow variables as

(u,p}y  (v{r,z,7re9,0) + (0, p},

where
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The axisymimetric part of the streaming flow therefore vanishes for standing waves (|Ay| = [A—|).

Although the above model can be integrated numerically by relatively inexpensive methods we
simplify it further by expanding the axisymmetric component of the streaming How velocity, ©, in
terms of purely azimuthal hyvdrodynamic modes. These satisty the eigenvalue equation

AW =V, +r WV, —r2V+V,, in 0<r<R, —1<z<0,
V=0asr—0, V=g onr=~Rorz=-1,

V. =5 on 2 =10,



The cigenvalues A are all real and negative. If only the first such mode is retained, we oblain

Ly =L+l Ay + iNAL + z’pﬂqg + i{exy Ai|2 + a3 ,4;\2)Ai Fiyv Ay,
vi(r)  el—o A = A, (12)
where £ = A Re™" > 0, and A; < 0 is the first purely azimuthal hydrodynamic eigenvalue. In the

following we define new variables

i - 1 o U1
JY = §(A+ — 1/1_), } = §(A+ | 1/1_)_, = 2 N
and rewrite equations (12) in the more useful form
X' = (14Ul +A)X +i{{cn + a)| X2+ 200 YK — iy — o) XY? + ipX — 2707,
Vie {1440 = ADY +il{o + o)V 4 200 [ XY —i(en — )Y X2 +ipy + 290X,
v = g(—v+i(XY - XY)). {13)

This form of the equations makes it clear not only that the {axisymmetric part of the) streaming
flow vanishes if either X O or Y 0, t.e, for pure standing waves, but also that both modes must
be present in order to drive such a flow.

Feuations (13) are equivariant with respect to the group £ generated by the two reflections

Ry (X, Y,v) = (—X,Y, ), B (X,Y.v)— (X, -Y, —v). {(11)

As a resull there are two types of steady states, the Pure Modes (Fo) given by P) = {0,Y,0) =
(0, Ry e, 0) and P = (X,0,0) = (R_e"=,0,0), with P invariant under Ry and P under Ry,
and the Mized Modes (M), given by M = (X, Y, n)  (R_e* | R e @), with no symmetry. These
and the associated time-dependent states are described in the following section.

2.3. Results

FEquations (13) exhibit remarkable behavior when £ < 1, i.e., when the time scale for the decay of
the slowest-decaying axigymmetric component of the sireaming flow is long compared to the decay
of (free) surface gravity-capillary waves. In the following we therefore take 2 0.01, and focus on
parameter values I°  —0.5, A 0.4, v —0.6, treating g as a distinguished bifurcation parameter.

IYigure 1 shows the resulting pure mode branches together with their stability properties. Both
hifurcate subcritically from the flat state. The F_ branch bifurcates first and acquires stability at
a saddle-node bifurcation before losing it again at larger amplitude at a symmetry-breaking steady
state bifurcation. The Fy branch is never stable, and neither are the mixed modes connecting the
pure mode branches. Thus interesting hehavior sets in beyond the symmetry-breaking bifureation
on the F_ branch, ie., for p > pgp = 2.8. In the following we describe the results of numerical
integration of Kqs. (13) in this regime.

Onece P_ loses stability at §F small perturbations drive the system to a stable branch of Ry Re-
symmetric periodic orbits, also shown in I9ig. 1. If the corresponding branch is continned backwards
(i.e., for 1 < pgp) one finds that it ultimately terminates in a heteroclinic bifurcation involving the
nonsymmetric fixed points A%, The eigenvalues of M= at this bifurcation are 0.001940, —0.42229,
—0.998 £ 1.31% and —1.58926 and hence no chaotic dynamics result. An entirely different scenario
unfolds when this periodic branch is continued for g > pgp. First, the By Ra-symumetric branch
undergoes a pitchfork bifurcation that generates a pair of stable asyminetric periodic orbits (see
Fig. 1, inset). With further increase in p these asymmetric orbits undergo a period-doubling
bifurcation PP and, as shown in the bifurcation diagram of Fig. 2, chaotic dynamics are found not
long after. The chaotic behavior is marked by a ¢risis in which two asymmetric chaotic attractors
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Figure 1. DBilurcation disgram [or steady and periodic orbits, in term of Tuclidean norm
[[{X.Y,v)|| and La norm ||(X,Y,0)||r,, respectively, as a lunction ol g. Thick solid (dashed)
lines correspond 1o stable {unstable) periodic orbits; thin solid {dashed) lines correspond (o
stable (unstable) steady stales. The arrow indicates the location of a suberitical bilurcation on
FP_ 1o unstable M. This bilurcalion produces a hysterelic transition Lo stable Ry Re-symmelric
oscillations that exist between the heteroclinic bifurcation indicated by the symbol O and a
sytmmetry-breaking bifurcation labeled SB (inset).

collide at g = 1.903 and merge, forming a symmetric chaotic attractor (a syminetry-increasing
bifureation). The interval over which chaos is observed is relatively short (1.902 < p < 1.92),
however, and the system is soon attracted to a new branch of By Rg-syminetric periodic orbits created
in a saddle-node bifurcation. When, in turn, this £y He-syminetric branch loses stability, we observe
a new branch of stable asymmetric periodic orbits created in a nearby saddle-node bifurcation.
This sort of alternating transition between B Rp-svmmetric and asymmetric oscillations is repeated
again and again. Note also that the chaotic windows associated with these transitions become
narrower atid narrower as g increases. In Fig. 3 we show stable attractors associated with three
consecutive periadic windows in Fig. 2. These limit cyveles are evidently relaration oscillutions, but
of an unusual type, involving slow drifts along branches of both equilibria and of periodic orbits,
with fast jumps between them. Moreover, these oscillations may be symmetric or asymumetric, with
the symmetry alternately present and broken in successive periodic windows. In the following we
suggest an explanation for this remarkable behavior, ¢f. [20].
To understand this behavior we rewrite Eqgs. (13) in the [orm

X' OFUX Y, v, Y FuX,Y,up), v eGX,Y,v), {15)

where X = (Re(X), Im(X)), Y = (Re(Y), Im{Y)}) and suppose that 0 < = « 1. The properties
of the relaxation oscillations can be understood by examining first the case ¢ = 0. In this case »
becomes a parameter, and Eqs. (15) become

X' = Fl(XaY;(‘yaH‘)? Y = FZ(X,Ya (U:#‘)' (16)
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Figure 2. Bifurcation diagram showing an alternating sequence of BiRs-symmetric { £ Rs)
and asymmetric {A) periodic orbits. The figure is constructed by recording successive maxima
ol [J(X, )| = V]| X7+ ||]Y]]? at cach value of ji. The inset shows an enlargement of the first
chaotic region.
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Figure 3. {a} Projection onto the (Re( X)), #) plane of stable symmetric and asymmetric periodic
orbits in successive periodic windows in Fig. 2. {I) The corresponding time series Re{ X({7)).

This pair ol equalions can have bolh steady stale solutions and periodic solutions. Of parlicular
significance is the one-dimensional nulleline ¥ 2 Fi(X, Y, v u) = Fo(X, Y, v; ) = 0 thal contains
the steady slates when 2 > 0 and consists of them when = = 00 As indicated in Fig. 4 the projection



of ¥ onto the (v, Re( X)) plane consists of pairs of branches of stable (%) and unstable (I7%) stales,
related by symmelry. In addition to these branches of steady states Bgs. (16) also contain a one
parameter family ol atiracting #mil cyeles. These periodic solulions are created, as v increases,
in a heleroclinic bifurcation involving the two lixed points U and U7, and are Ry Rp-symmelric.
Between Lhis heteroclinic bilurcation and the turning points ¢& the stable Ry Ro-symmetric limit
eycles coexist with the stable fixed points S (sce Fig. 4). When ¢ is finite but small these states
couple Lo the slow evolution ol the variable v, and the manifelds of steady states and periodic orbits
become part ol the slow maenifold of the system (15). In the following we speak of the solutions as
drifting along this manilold {(the slow phase); this drilt procecds until the gystem is forced away [rom
the slow manifold, heralding the onsct of the [ast phase ol the oscillation thal takes it back to the
slow manifold. The plots in Figs. 3 can be inlerpreted in this light, with epigsodes ol almosl constant
Re(X) corresponding o drift along the manifold of steady states S and the return trajectory
consisting ol a drilt along the branch of periedic orbits.
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Figure 4. The slow manifold for the system {15) ltes within O(g) of the manifolds S, UF of
steady states, and the manifold p of pertodic orbits, of Eqgs. (15) with £ = 0. The slow drifts in
2 that oceur when 0 < 2 <€ | are indicated by broken ‘horizontal’ arrows; the fast phase results
in ‘vertical” jumps. These are indicated by vertical arrows, and labeled by integers to indicate
the corresponding transition in the assoctated time series Re(X (7)), (a) Asymmetric relaxation
oscillations of Eqs. (15) when g = 6.0 and £ = 0.01. (b) By Bo-symmetric relaxation oscillations
of Eqs. (1) when g = 6.5 and £ = 0.01,

To understand the nature of the resulting relaxation oscillations in greater detail we begin by
considering the drift along Af‘;f , the part of the slow manifold near the stable steady states ST.
The drift is in the direction of increasing v and so takes the system towards gt (see Fig. 1). Near
this point the slow drift ends and the system juraps abruptly to the branch of symmetric periodic



stales, labeled p. In Fig. 4 this transition is indicated by a vertical shori-dashed line, and labeled
with the number 2. The system then drilts towards the left along the corresponding slow manifold
M, until it rcaches the vicinily ol the £ = 0 heteroclinic connection where the ¢ = O oscillations
disappear, and so does the associated slow manifold M, (0 < = < 1). With the disappearance of M,
the system is forced to cither jump toward ST or toward S~. Which ol these two oulcomes Lakes
place is determined by the phase ol the trajectory near 77 or U~. These stales arc saddles with
one unslable direction and three stable directions. In what follows it ig important that the least
stable eigenvalue is in [act complex. For example, when € = 0 the cigenvalues of U= al g = 6.5 are
(0.6547, —0.9999 4 14.2367 and —2.65405, and Lthese values are typical of the other periodie windows
as well. The time series show clearly that when the drilt along A, ends the system approaches
gither I70 or I77 along ils stable manifold; what happens therealter depends on which parl of ils
unstable manifold is lollowed. I the unstable manifold of 71 (say} takes the system to S (as in
Fig. 4{a)) the last phase (labeled 1) terminates on 57 and the system thercalter drifls towards the
right along MJ. The resulting oscillation is an asymmetric relaxation oscillation. In contrast, il the
unstable manifold of 171 takes the system to 8= (el. Fig. 5) the fast phase terminates on §— and
the system thercafler drifts towards the right along Mg . In Fig. 4(b) this transition is labeled 3;
the accompanying panel shows Lhe corresponding signature in the time series. When Lhe slow phase
terminates the system jumps back to the large amplitude periodic state (trangition 2) and drills
along it to the left, but Lhis time when it falls ofl Ad, in ihe transition labeled 1 it goes Lo U™ and by
symmetry [ollows ils unstable manifold towards S'. The resulling trajeciory is Ry Rg-symmetric.
It is clear that these two oulcomes are the resull of a o phase change in the direction in which the
trajectory enters the neighborhood of U1, Figure 5 shows the oscillations of Fig. 3 in a projection
that highlights the role of the stable manifold of these unstable steady states as a separatrix between
the two slow phases of the relaxation oscillation.

0.2

Im{ X

-0.2

Figure 5. Projections of (a) an asymrmetric solution at g = 6.0 and (b} an Ry Re-symmetric
solution at g = 6.5 on the (Re(X), (X)) plane, both calculated with £ = 0.01, showing the
role played by the stable manifold of U+ in determining the part of the slow s table manifold
followed by the solution. The actual trajectory spirals around this manifold.

We now turn to the sequence of fransitions revealed in Fig. 2. The bifurcation diagrams in
Fig. 6 show what happens in all transitions from an asyvmmetric oscillation to a symietric one, and
from a symrmetric one to an asymmetric one, as g increases, while Fig, 7 shows the period of the
corresponding solutions, also as a function of g (boxed regions). Each transition is accompanied
by a stability gap within which chaotic dynamics (symmetric and agsymmetric) are found, and each
new periodic solution emerges out of such a region in a saddle-node bifurcation. Figure 7 also shows
that in each transition the period of the stable oscillation jumps by an approximately constant



amount, and subscquently decreases along both the stable and the unstable branches away [rom the
saddle-node bilurcation.
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Figure 6. Detail of the bifurcation diagrams near the transition from agymmetrie to symmetric
relaxation oscillations near (a) g = 6.23, and {b) g = 6.79. Solid (broken) lines indicate stable
(unstable} solutions. The labels SN, SB and PD denote saddle-node, symmetry-breaking and
period-doubling bifurcations, respectively.

Figure 8 focuses on a branch of asymemnetric relaxation oscillations that first appears in a saddle-
node bifurcation near = 7.0, and shows that as one follows the stable branch from the saddle-node
towards larger g one encounters an interval of g in which the period drops precipitously (Fig. 8(a),
insct). Just alter this poinl the stable (asymmetric) relaxation oscillation loses stabilily via period-
doubling (not shown). Figure 8(b) shows the time scries al the point marked 3 (p = 7.3118) just
belore (his loss of stability, and suggests thal this less of stability is a conscquence of the [acl thal
the trajectory is beginning to [ollow the unstable manifold before pecling ol towards S*. By point
b {p = T7.5533) the lrajeclory follows the unstable manifold 77 all the way to the saddle-node
al g7. For yel larger g the oscillation remains unstable but the trajectory departs from U7 in
the epposile direction {sce point 6, g = 10.0). These results indicate that with increasing g the
trajectory comes closer and closer (o the hyperbolic steady states 7% resulting in longer and longer
drill. along the unstable manifold Ady;. This fact also suggests an increasing role [or Lhe leading
eigenvalucs of U=, In the present case the least stable cigenvalue A, is complex, bul the unstable
cigenvalue A, < |Re(\,)|. Thus the periodic solutions in the fast system approach the hetleroclinic
conneclion meneolotically and no chaotic dynamics arce expected. Scclion 3 examines the dynamics
when Lhis condition does nel hold.

Stable bursting behavior ol the Lype shown in Figs, 3, 4 and 8 becomes increasingly dramatic
as @ iy inercased, revealing ever more clearly the two slow phases and the rapid transition belween
them. In Fig. 9(a) we show a stable oscillation lor £ = 0.01 and g = 9.0 projecled onto the
(X, Y = IIXI2 1Y% 0) plane, of. Fig. 4, and superposed on the slow manifold computed
with £ = 0. We see that during one part of the slow phase (labeled 1) the system drifts towards
smaller v along the slow manifold A, of stable pertodic solutions p. Near the heteroclinic connection
in the fast system the oscillations end and the system undergoes a rapid transition to the stable
manifold Mg indicated by a vertical arrow. Thereafter it enters a new slow phase, labeled 2, and
drifts in the direction of increasing v, towards the fold point ¢, where the slow phase ends and the
systemn makes a rapld transition back to Af,. This transition is also indicated by a vertical arrow.
The small cusp-like feature at the onset of phase 2 results from a brief visit of the trajectory near
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Figure 7. Alternating sequence of /1) Iip-symmetric and asymmetric relaxation oscillations. The
diagram show the period (half-period) of asymmetric (symmetric) periodic relaxation oscillations
as a function of . Solid {dashed) line corresponds to stable (unstable) states. The labels SN, 85
and Ff¥ denote saddle-node, symmetry-breaking and period-doubling bifurcations, respectively.

the unstable slow manifold Ay, before being ejected towards the stable slow manifold Mg, As p
increases and the next symmetry-switching transition is appreached the solutions spend more and
more time near M, and hence involve longer and longer episodes of drift along M. Figures 9(b.c)
show two examples of this behavior, differing only slightly in the value of 4. In the first of these
the system drops to the unstable steady state at the end of the slow phase L, and then drifts along
M towards larger v before a sudden jurnp to Mg, The slow drift continues along Mg towards the
fold on ¥ where the system jumps to the oscillatory state p, and the slow phase 1 recommences.
In contrast the solution in Fig. 9(¢) jumps from My to M, (instead of Mg} and so begins to drift
towards smaller v but the next time, instead of following M, it jumps to Mg and begins to follow
the standard relaxation oscillation scenarto. Even more exotic possibilities are displayed in Fig. 10.
The remarkable sensitivity to the value of g is evidently a consequence of the amplification of small
differences in the approach of the trajectory towards Ay by the unstable eigenvalue of £/, and heralds
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the transition from asymmetric oscillations to symmetric cnes: in effect, with each half-turn around
[/% the trajectory changes the direction in which it leaves /%, and hence its symmetry. In addition
its period jumps by a finite amount, a phenomeneon we have already noted. When the number



ol turns increases monotonically with o there will be an infinite sequence ol symmeiry-changing
transitions, and hence a sequence ol periodic windows with allernatling symmetric and asymmelric
relaxation oscillations. Thus cach saddle-node bilurcalion ercates a pair of periodic orbits with an
exira half-lurn. Morcover, since il takes & finite interval in g to change the [requency sulliciently Lo
add a half-turn these symmelry-changing iransitions cannol accumnlale, in contrast 1o the cascades
ol symmetry-switching gluing bilurcations that oceur in other De-symmetric systems |7]. For other
parameter choices (e.g, I'=0.7, A = —0.6, 0.35 < v < 0.4, not shown) the number of (ransitions is
finite.

3. Square domains
Simonelli and Gollub ([19]) performed detailed experiments in square and almost square containers,
focusing on the interaction of modes (3,2) and (2,3). In a square container these modes are related
vin a reflection in the diagonal and hence bifurcate simultaneously from the flat state. Abstract
theory also shows thal a mixed mode state, consisting of an cqual amplitude superposition of these
two stales, bilurcales al the same point. Both these stales are periodic in time, and in the square
conlainer Simonelli and Gollub [ound no olther stales near the primary bifurcation. The situalion
becomes quite dillerent in a rectangular container. In a container of horizontal aspecl ratio 1.07
Simonelli and Gollub [ound dramatic relaxation oscillations near the mode interaction point, and
these could be periodic or chaotic. These oscillations consisted ol a long period oscillation (up to 2 hr)
in the amplitudes of the (3,2} and (2, 3) modes, a period much longer than the period of the modes
themselves (0.078). To the authors” knowledge no detailed explanation lor this remarkable behavior
has been provided, although several suggestions have been made [16]. Given the regsemblance of
this behavior 1o that deseribed in Sect. 2.3 for the elliptically distorted eylinder, we explore here
the possibilily that the observed relaxation oscillations are a consequence of the coupling of the Lwo
modes with a streaming flow.

In the case of an almost sguare reclangular domain ihe coupled amplitude-sireaming llow
equations take the form |8

Ay = — i+ A)Ax | iy T o Ag)Ax 1 s AZ AL
()
+ SZ/ /u gdxAz,
du/or — [u+G(A, A Y x(Vxu)=—-Vp+ Re™'Au,

with appropriate boundary conditions on u. Here A4 are amplitudes of two eigenfunctions that are
related by reflection in the xy diagonal of the square, e.g., the (3,2} and (2,3} spatial modes of the
§ysten,

G=iALA_ — AL A ) g—h),

where g and h are known functions, and the remaining quantities have their earlier meaning,
When A = 0 these equations are symmetric with respect to the two reflections

x— —x, A — —Ay, {uy,u,ug) — (—ug, U, Us) (17)

and

r—=y, Ap— A (upug,ug) — (ug, g, uz) (18)
that generate the group of symmetries of a square. When A / 0 (18) is no longer a symmetry, and
the equations are invariant under (17) and

Yy — -y, A — *A_} (’U-h Uz, ’-!I-g) —* (ul, —Ug, U3)
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only. We can now proceed as in the case of the eylindrical container, and project onto the slowest
e of the square. In general, however, the mean flow will contain contributions that are odd/odd,
odd/even, even/odd and even/even with respect to the symmetries (17), (18}, of which only the
first couples to the amplitude equations. The simplest model problem that captures the coupling
between the amplitudes and the streaming flow is therefore given by [§]

X’ —(1 44+ ANX + i | X2 4 ] V[DX +ia X Y2 +ipX — Y,
Y=  —(1+4T —A)Y +iloa] Y] + o XY +iasY X7 +ipY + v X,
v'= (v +i(XY - XY)), (19)



where X = ALY = A_ and v represents the odd/odd part of the sireaming flow. The use of the
variables X and Y emphasizes the similarity between this system and (13). In particular Igs. {19)
arc equivariant with respect Lo the group D generated by the two rellections (14). As a result
there are again two types of steady slates, pure modes and mixed modes. The former are given
by P, = (0,Y,0) = (0,R,e¥+,0) and P_ = (X,0,0) = (R_¢*-,0,0), with P| invariani undcr
Ry and P invariant under Rp. This time, however, there are two types of mixed modes, in-phase
mized modes [4] given by Ms = (X,Y,0) = {R_e*- R, e+, 0) with ¢_ = ¢, and general mized
modes given by MM = (X, Y, v) = (R_e"~, R "+ v), XYv # 0. Neither of these has a reflection
Symmaetry.

3. 1. Results

For distilled water in a square container of depth o = 2.5¢m and horizontal cross-section 6.17 x6.17¢m
vibrated vertically with [requency close Lo twice the natural frequency associaled with the inviseid
mode {m,n) = (3,2} inviscid theory gives qq = —0.194057, ey = 0.026513, vz = —0.274717 [1, 4|.
The change ol the horizontal cross-section Lo 6.17cm x 6.6cm introduces a nonzero value A into the
equalions; we assume, however, thal this change in aspect ratio is small cnough that the nonlinear
cocllicients ay, ae, a3 remain unaffected. Finally, we use viscous lincar theory to estimale the decay
rate of the (3,2) mode and ol the associated streaming llow. We obtain & = 0.001, ¢ = 0.0001,
respectively, and scale the equations with respect to the former. Thus ¢ = 0.1 and A = 1.6. As in
the elliplical case the cocflicient v remains unknown, and we explore two cases thal appear o be
relevant Lo the experiments.

Theorics that respect the Dy symmetry of the square container (e.g., [18]) show thal when A =0
the modes P and Mg bifurcale simultancously [rom the flat state. In addition the theory reveals
the prescence ol secondary branches of MM thal allow the transler of stability between the P and
Ms stales. When the P oand Ads branches bifurcale in opposite directions these secondary slales
can undergo a Hopl bifurcation, but no Tlopl bifurcations are otherwise present. When A 0
the breaking of the square symmetry splits the primary bifurcation into two successive bifurcations
to pure modes; the loss of reflection symmetry in ihe diagonal also implies that Ms no longer
hifurcate from the flat state, and bifurcate ingtead from the pure modes in secondary hifurcations.
These secondary bifurcations should not be confused with the secondary branches to MM when
persist when A / 0. However, the coupling to the mean flow introduces a new class of oscillatory
instabilities as well [8]. These have a dramatic effect on the bifurcation diagrams because they can
occur on the primary pure mode branches. Such bifurcations produce an oscillating contribution
involving the competing pure mode, together with an oscillating mean flow contribution, and appear
via Takens-Bogdanov bifurcations on the Fy branches. IYigure 11 shows typical bifurcation sets for
these branches in the two cases (a) v —0.2 and (b} v  —0.01, i.e., the amplitude on the Py
branches at which various secondary bifurcations occur, as a function of the detuning I'.

Ifigure 12 shows the associated bifurcation diagrams in case (a) for four different values of the
detuning 1. Since A > 0 the mode P_ bifurcates before Py when I' < 0 and conversely when
I" > 0. In Iig. 12(a) both branches bifurcate suberitically, and so are initially unstable. However,
I acquires stability at a saddle-node bifurcation SN_ but loses it again at a symmetry-breaking
bifureation that produces the secondary states M A (Fig. 13{a)}. No steady states are stable bevond
this point. Since this point lies to the left of the primary instability to £7_ the primary instability must
produce time-dependence. In Fig. 12(D) the detuning is smaller, and ’_ bifurcates supercritically,
hefore losing stability to MM much as in (a); of. Fig. 13(b). In Fig. 12{¢) T" > 0 and the first
instability is to I74. The bifurcation to ’1 is suberitical but the 7”1 branch remains unstable even
above the secondary saddle-node bifurcation SNy, This is a consequence of an unexpected Hopf
bifurcation on the 4 branch below the saddle-node bifurcation. In this case there are therefore no
stable steady states near either of the primary instabilities, although £ does become stable briefly
at larger amplitude, after shedding an AMs branch {Fig. 13(c)). Finally, in case {d} the pure modes
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Figure 11. Bifurcation sets of the pure modes Fy as a function of the Euclidean norm
[[{X, Y]] = /| X]? +|Y]? and the parameter I for {a) v =02, and (b)y —0.01. Saddle-node,
symmetry-breaking and Hopf bifurcations are labeled by SNy, §5_ a4 and Hy, respectively.
The triangles indicate codimension-two points. Takens-Bogdanov, saddle-node/Hopf and saddle-
node/symmetry-breaking bifurcations are labeled by 7B, SN/H and SN/S B, respectively.

I+ bifurcate supercritically and remain stable until a secondary Hopf bifurcation H4. This stability
interval overlaps with the stability interval of I, between SB_ and H_, also present in case {¢).
The bifurcation diagrams in Fig. 12 demonstrate dramatically the role played by the streaming How:
without this flow there would be no Hopf bifurcations on the primary branches £*4, and the behavior
of the system would be quite different. Figure 13(b) shows the only example of & Hopf bifurcation
that persists in absence of the streaming flow (cf., [10]).

Figure 11 shows the corresponding results for v+ = —0.01. Here 7, bifurcates first but does
so subcritically. Morcover, this branch undergoes two further bifurcations, a Hopl bilurcatlion and
a symmelry-breaking bifurcation (o MA | prior to a saddle-node bifurcation. As a result Lhe P
branch is once unstable above SN, while the MM branch is initially (wice unstable, Since (he
MM branch ends in a supercrilicol bilurcation on F_ it must therelore change its stabilily belween
P, and P_. The simplest way ol deing this, conlirmed numerically, is via a single terliary Hopl
bilurcation, labeled 7 in Fig. 14{b). As a resull the only stable steady state found near the primary
bilurcation is the MM stale, beyond II. In the example shown IT is to the left of the primary
bilurcation, although for olher parameter values this point can {all 1o the right; in the laller casc
the primary instability leads direetly into time-dependent behavior. A similar scenario is also present
in an clliplical domain, where it produces the remarkably rich dynamics deseribed in [6].

In Fig. 15 we show some of the dynamical behavior crealed in the bilurcalion IJ_ on F_ in
Fig. 12{d). This bilurcation is [ound to be subcritical; the resulling periodic orbil acquires stability
al a saddle-node bilurcation, belore undergoing a symmelry-breaking bilurcation, followed by a
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Figure 13. Enlargement of the framed regions in Fig. 12.

ascade of period-doubling bifurcations, the first of which is shown in Fig. 153(¢} projected onto the
(Re(X),Re{Y)) plane. This projection corresponds to that used by Simonelli and Gollub ([19]) in
their figure 13, and allows us Lo conclude thal most likely the behavior in chis ligure is produced by

a scenario similar Lo Fig. 15, Figure 16 shows the corresponding Lime series.
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states and periodic orbits in terms of the Tuclidean norm
(X.Y,v}||1., respectively, as a function of g in case (d) of Fig. 12.
Thick solid (dashed) lines indicate stable (unstable) periodic orbits produced in a subcrilical
Hopf bifurcation H_ on F_, while thin solid {dashed) lines indicate stable (unstable) steady
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Figure 16. Time series corresponding to the attractors in Fig. 15(c).

2.2, Chaotic dynamics near onsct

Chaotic dynamics near onset are found for positive detuning in the range I'rg S I' 5 Tan/nir
(Fig. 11{a)}. Figure 17 shows three examples, projected onto the (Re(X) Re(Y)) plane, while
Fig. 18 shows the corresponding time series. Together these fipures suggest the presence of two
gluing bifurcations. Specifically, in Figs. 17(a) and [8(a) we see that Re(X) and Re(Y') not only both
oscillate about zero, but that both approach the origin essentially simultaneously. Since the forcing
of the streaming flow vanishes when Re(X) = Re(Y) = 0 the streaming flow decays exponentially
during this phase, but jurnps to a larger value as soon as Re(X) and Re(Y) become nonzero again.
In Figs. 17{b} and 18(b) Re(X) still oscillates about zero but Re(Y') remains positive. Symmetry
with respect to fio indicates that a reflected solution must also exist, suggesting that the symmetric
attractor in Fig. 17(a) is produced by the gluing of these two asvinmetric attractors in a symmetry-
inereasing bifurcation, even though the parameter values shown are still far from the required global
bilurcation. This conjeclure is supperted by Fig. 18(b) which shows that both Re(X) and Re(Y)
are close Lo the origin al the same time. Indeed, while Re(X) drills towards the origin, Re(Y) drilts
slowly away [rom it, eventually triggering a large excursion in Re(Y) belore an abruptl return Lo
the origin. The streaming [low once again decays [reely when both Re(X') and Re(Y) are small bul
picks up dramalically during each excursion [rom the origin, It is this increase in e thal arrests
the growth of Re(Y) and initiates the return 1o the origin. Finally, in Fig. 18(c) the time series in
Re(X) is more symmelric, and the system approaches the origin during both upward and downward
swings. These ocour more [requently as might, be expected ol a larger detuning.
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Figure 19. Stable periodic relaxation oscillations for T' = —7.5, g = 6.0. (a) The [asl system
(¢ = 0) projected on the (|[(X,Y)]]72,v) plane. Thick solid (dashed) lines indicate branches of
stable (unstable) oscillations, while thin solid (dashed) lines indicate stable {unstable) steady
stales. The oscillations terminate in a heleroclinie bilurcation ol Shil'nikov type (indicaled
by O). The slow drifls, present when 0 < 2 < 1, are labeled with integers (o indicate the
corresponding phase in the solutions computed from Egs. (19) with (b) e = 0.1 and (¢) £ = 0.01.
The arrows in {a) indicate the dircction of drilt as well as the location of the [ast transitions.

3.3. Relazalion oscillalions near onsel

In the preceding seclion we located chaotic dynamics between Lthe codimension-lwo points T3 and
SN/II on the Py branch (Fig. 11(a)), L.c., for positive detuning T'. In contrast, for negative deluning
we lind relaxvalion oscillalions involving both steady and periodic orbits; these arce associaled with
the 18 bifurcation on the F_ branch (I7ig. 11(a)) since it is this bifurcation that is responsible for the
appearance of oscillations in thig regime. The relaxation oscillations are found for —11 < I' < =3,
the values of [' used in [19] (see figure 9 of their paper).

Iigure 19(a) shows a projection onto the (||{X, Y')||.,, v} plane of the steady and periodic solutions
of the fagt system, obtained from Fgs. (19) by setting e 0. Agin the case of the elliptical domain the
fast system admits both steady and periodic solutions, with the periodic oscillations terminating in
a heteroclinic bifurcation on the unstable steady states (/. However, there is an important difference
hetween these two cases. In the elliptical case (Sect. 2.3) the leading stable and unstable eigenvalues
—As T iw, A, of 7 at the global bifurcation satisty the condition 6 = A/ Ay > 1, implying that the
periodic ogeillations approach the global bifurcation monetonically, and remain stable throughout. In
the present case the leading eigenvalues are A, 10.2737, Ay +dw  —0.999548 £ 1989559 implying
that ¢ < 1. Consequently the branch of periedic oscillations undergoes an infinite number of hack-
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Figure 20. Timne series corresponding to the attractors in Fig, 19(b,¢}. (a) € = 0.1 and (b)
e =0.01.

and-forth oscillations as it approaches the global bifurcation (see Fig. 19(a}}. In this region one finds
multiple coexisting stable oscillations, as described, for example, by Glendinning and Sparrow [3].
Intervals of stable oscillations are created and destroyed at saddle-node bifurcations; within each
such inlerval near the global bilurcation there are cascades ol period-doubling bifurcalions leading
to intervals of chaos. Subsidiary (multipulse) heteroclinic orbits are also present. ITowever, despite
this increased complexily in the behavior of the [ast system the relaxation oscillalions (hal take
place once £ > 0 are relatively simple. This is because the slow drilt along the branch ol periodic
oscillations {labeled 2 in Fig. 19(a)) takes the system to the first sadddle-node bilurealion, where
the system jumps Lo the stable steady state 5 of the [ast system; therealler it drills along 5 Lowards
larger » (labeled 1 in Fig. 1%{a)) and hence towards the saddle-node bifurcation on S where an
abrupl transition back Lo periodic oscillations takes place. The resulting relaxation oscillalions arc
shown in Figs. 19(b,c¢) for two values ol e.

bince the drift along the branch of periodic solutions of the fast system now lerminales al a
saddle-node bilurcation the trajectory drilts past the saddle-node bifurcation and approaches the
stable sleady stales S ol the [ast system wilhout visiting a ncighborhood ol the unstable slates
7. Tt is lor this reason Lhal the relaxation oscillations in the reclangular domain lake a simpler
form than those in the elliplical domeain. In the latler the cigenvalues of U7 conlrol the reinjection
ol the (rajeclory 1o one ol a pair ol 5, a fact thal is responsible lor the succession of {ransilions
belween relaxalion oscillalions of different symmelry types. Morcover, the close approach (o U7 is
also responsible [or the observed drilts along U7, In contrast, any drilts along I7 in Tgs. (19) would be
a conscquence of a canard, and conscquently would be restricted to an exponentially small interval
inwases— 0.

4. Discussion

In this paper we have examined the dynamics of parameirically driven Faraday waves in Lhree-
dimensional containers on the assumption that {i) the viscosily of the liquid is small (as measured
by the dimensionless quantity €, < 1} and (i1} the celfective Reynolds number of the streaming
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Figure 21. (a) The time series of Iig. 9{a) replotted in terms of the rotating wave amplitudes
Ay, revealing a sequence of Type Ta bursts reminiscent of pancreatic J-cells. The labels 1 and
2 indicate the two slow phases, a drift along a branch of steady states and of periodic orbitg of
the fast system, respectively. Ifigures (b,¢) correspond to IMigs. ¥{b,c}.

flow driven in oscillatory boundary layers is also small. We focused on the role of forced symmetry
breaking in providing a coupling between the streaming flow and the oscillations responsible for the
oscillatory boundary layers driving this flow. As examples we have chosen (a) a container with a
circular cross-section perturbed into an elliptical one, and (b) a square container perturbed into
a slightly rectangular one. Both systerns are described by a five-dimensional system of ordinary
differential equations with the symmetry L2s of o rectangle. These equations are alinost identical; it
is not surprising therefore that they exhibit shmilar dynamics. We have focused on an unexpected
property of these equations, namely relaxation oscillations. These oscillations consist of slow phases
interrupted by fast ‘jumps’ from one state to another, and are possible because of the disparity in



time scales [or the decay of [ree surlace gravity-capillary waves and ol the sircaming flow. When
€'y < 1 the latter decays much more slowly, a fact that is responsible [or the singular perturbalion
structure ol our reduced system. In bolh cases the [ast system, oblained by [reezing Lhe slreaming
flow, exhibiled bolh steady stales and periodic oscillations; as a resull we were able Lo find in the
slow-last system relaxation oscillations consisting ol slow drifts along (slow) manifolds of sleady
stales and periodic orbils with f[ast “jumps’ between them. These jumps are typically (riggered
by the passage through a saddle-node bilurcation, although in case (a) a global bifurcation of the
periodic stales plays a similar role. The reason this is sais thal the leading cigenvalues al the global
bilurcation satisfy the incquality § > 1. In contrast, the eigenvalues in case (b) satisfy the Shil'nikov
incqualily 4 < 1 with the resull that the drift along the manifold of periodic orbits ‘misses’ the
global bifurcation. The conscquences of this dillerence are profound. In case (a) the trajectory of
the system 18 foreed into a neighborhood ol the unstable states. As a consequence the system drilts
for a lime along these unstable states belore follewing the unstable manifold to one of a pair of
symmetry-relaled stable steady states. I is this feature of the system that is responsible [or the rich
dynamics described in Scct. 2.3. In contrast, in case (b) the trajectory avoids the unstable sieady
stales enlirely and the dynamics is much more conventional.

In bolh cases we have used the cocllicients of Lhe nonlinear terms compuled {rom invigcid theory,
and estimales of the decay rates ol the surlace gravity-capillary waves and of the sireaming [low,
and explored the dependence ol the system on the forcing amplitude and frequency (i.c., deluning)
for lixed symmetry breaking as measured by the parameter A. Thus except for the unknown value
ol the coeflicient v that deseribes the coupling of the surlace waves 1o the streaming flow all the
cocllicient values used represent realistic values. However, despite this ellort, we have nol been able
to reproduce in detail the relaxation oscillations reported by Simonelli and Gollub in [19].

We conclude by noting that if the time series (I'ig. 9a) is replotted using the rotating wave
amplitudes Ay (I“ig. 21a) the result is indistinguishable from the so-called type la bursts exhibited,
for example, by pancreatic 3-cells |9/, and indeed the dynamical systems explanation of this behavior
suggested in Sect. 2.3 has much in common with that advanced for pancreatic S-cells by Terman
[20]. There is one key difference, however, in addition to the absence of symmetry. In the pancreatic
G-cell model Terman assumes that the slow drift along {7 is in the seme direction as that along
the periodic states p; in our problem these drifts are In opposite directions, and it is this fact that
is responsible for the dramatic oscillations shown in Fig. 9(b,c), see also Fig. 10, and replotted in
Fig. 21(b,c).
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