146 research outputs found
Template-stripped gold surfaces with 0.4 nm rms roughness suitable for force measurements. Application to the Casimir force in the 20-100 nm range
Using a template-stripping method, macroscopic gold surfaces with
root-mean-square (rms) roughness less than 0.4 nm have been prepared, making
them useful for studies of surface interactions in the nanometer range. The
utility of such substrates is demonstrated by measurements of the Casimir force
at surface separations between 20 and 100 nm, resulting in good agreement with
theory. The significance and quantification of this agreement is addressed, as
well as some methodological aspects regarding the measurement of the Casimir
force with high accuracy.Comment: 7 figure
Constraints on non-Newtonian gravity from the Casimir force measurements between two crossed cylinders
Constraints on the Yukawa-type corrections to Newtonian gravitational law are
obtained resulting from the measurement of the Casimir force between two
crossed cylinders. The new constraints are stronger than those previously
derived in the interaction range between 1.5 nm and 11 nm. The maximal
strengthening in 300 times is achieved at 4.26 nm. Possible applications of the
obtained results to the elementary particle physics are discussed.Comment: An error in the text and in the figure had been corrected. To appear
in Phys. Rev.
Temperature correction to the Casimir force in cryogenic range and anomalous skin effect
Temperature correction to the Casimir force is considered for real metals at
low temperatures. With the temperature decrease the mean free path for
electrons becomes larger than the field penetration depth. In this condition
description of metals with the impedance of anomalous skin effect is shown to
be more appropriate than with the permittivity. The effect is crucial for the
temperature correction. It is demonstrated that in the zero frequency limit the
reflection coefficients should coincide with those of ideal metal if we demand
the entropy to be zero at T=0. All the other prescriptions discussed in the
literature for the term in the Lifshitz formula give negative entropy. It
is shown that the temperature correction in the region of anomalous skin effect
is not suppressed as it happens in the plasma model. This correction will be
important in the future cryogenic measurements of the Casimir force.Comment: 12 pages, 2 figures, to be published in Phys. Rev.
Casimir Effect on the Worldline
We develop a method to compute the Casimir effect for arbitrary geometries.
The method is based on the string-inspired worldline approach to quantum field
theory and its numerical realization with Monte-Carlo techniques. Concentrating
on Casimir forces between rigid bodies induced by a fluctuating scalar field,
we test our method with the parallel-plate configuration. For the
experimentally relevant sphere-plate configuration, we study curvature effects
quantitatively and perform a comparison with the ``proximity force
approximation'', which is the standard approximation technique. Sizable
curvature effects are found for a distance-to-curvature-radius ratio of a/R >~
0.02. Our method is embedded in renormalizable quantum field theory with a
controlled treatment of the UV divergencies. As a technical by-product, we
develop various efficient algorithms for generating closed-loop ensembles with
Gaussian distribution.Comment: 27 pages, 10 figures, Sect. 2.1 more self-contained, improved data
for Fig. 6, minor corrections, new Refs, version to be published in JHE
Casimir Effect as a Test for Thermal Corrections and Hypothetical Long-Range Interactions
We have performed a precise experimental determination of the Casimir
pressure between two gold-coated parallel plates by means of a micromachined
oscillator. In contrast to all previous experiments on the Casimir effect,
where a small relative error (varying from 1% to 15%) was achieved only at the
shortest separation, our smallest experimental error (%) is achieved
over a wide separation range from 170 nm to 300 nm at 95% confidence. We have
formulated a rigorous metrological procedure for the comparison of experiment
and theory without resorting to the previously used root-mean-square deviation,
which has been criticized in the literature. This enables us to discriminate
among different competing theories of the thermal Casimir force, and to resolve
a thermodynamic puzzle arising from the application of Lifshitz theory to real
metals. Our results lead to a more rigorous approach for obtaining constraints
on hypothetical long-range interactions predicted by extra-dimensional physics
and other extensions of the Standard Model. In particular, the constraints on
non-Newtonian gravity are strengthened by up to a factor of 20 in a wide
interaction range at 95% confidence.Comment: 17 pages, 7 figures, Sixth Alexander Friedmann International Seminar
on Gravitation and Cosmolog
Surface-impedance approach solves problems with the thermal Casimir force between real metals
The surface impedance approach to the description of the thermal Casimir
effect in the case of real metals is elaborated starting from the free energy
of oscillators. The Lifshitz formula expressed in terms of the dielectric
permittivity depending only on frequency is shown to be inapplicable in the
frequency region where a real current may arise leading to Joule heating of the
metal. The standard concept of a fluctuating electromagnetic field on such
frequencies meets difficulties when used as a model for the zero-point
oscillations or thermal photons in the thermal equilibrium inside metals.
Instead, the surface impedance permits not to consider the electromagnetic
oscillations inside the metal but taking the realistic material properties into
account by means of the effective boundary condition. An independent derivation
of the Lifshitz-type formulas for the Casimir free energy and force between two
metal plates is presented within the impedance approach. It is shown that they
are free of the contradictions with thermodynamics which are specific to the
usual Lifshitz formula for dielectrics in combination with the Drude model. We
demonstrate that in the impedance approach the zero-frequency contribution is
uniquely fixed by the form of impedance function and does not need any of the
ad hoc prescriptions intensively discussed in the recent literature. As an
example, the computations of the Casimir free energy between two gold plates
are performed at different separations and temperatures. It is argued that the
surface impedance approach lays a reliable framework for the future
measurements of the thermal Casimir force.Comment: 21 pages, 3 figures, to appear in Phys. Rev.
Constraints on Non-Newtonian Gravity from Recent Casimir Force Measurements
Corrections to Newton's gravitational law inspired by extra dimensional
physics and by the exchange of light and massless elementary particles between
the atoms of two macrobodies are considered. These corrections can be described
by the potentials of Yukawa-type and by the power-type potentials with
different powers. The strongest up to date constraints on the corrections to
Newton's gravitational law are reviewed following from the E\"{o}tvos- and
Cavendish-type experiments and from the measurements of the Casimir and van der
Waals force. We show that the recent measurements of the Casimir force gave the
possibility to strengthen the previously known constraints on the constants of
hypothetical interactions up to several thousand times in a wide interaction
range. Further strengthening is expected in near future that makes Casimir
force measurements a prospective test for the predictions of fundamental
physical theories.Comment: 20 pages, crckbked.cls is used, to be published in: Proceedings of
the 18th Course of the School on Cosmology and Gravitation: The Gravitational
Constant. Generalized Gravitational Theories and Experiments (30 April- 10
May 2003, Erice). Ed. by G. T. Gillies, V. N. Melnikov and V. de Sabbata,
20pp. (Kluwer, in print, 2003
Thermodynamical aspects of the Casimir force between real metals at nonzero temperature
We investigate the thermodynamical aspects of the Casimir effect in the case
of plane parallel plates made of real metals. The thermal corrections to the
Casimir force between real metals were recently computed by several authors
using different approaches based on the Lifshitz formula with diverse results.
Both the Drude and plasma models were used to describe a real metal. We
calculate the entropy density of photons between metallic plates as a function
of the surface separation and temperature. Some of these approaches are
demonstrated to lead to negative values of entropy and to nonzero entropy at
zero temperature depending on the parameters of the system. The conclusion is
that these approaches are in contradiction with the third law of thermodynamics
and must be rejected. It is shown that the plasma dielectric function in
combination with the unmodified Lifshitz formula is in perfect agreement with
the general principles of thermodynamics. As to the Drude dielectric function,
the modification of the zero-frequency term of the Lifshitz formula is outlined
that not to violate the laws of thermodynamics.Comment: 8pages, 4 figures; Phys. Rev. A, to appea
Bacterial ribosome requires multiple L12 dimers for efficient initiation and elongation of protein synthesis involving IF2 and EF-G
The ribosomal stalk in bacteria is composed of four or six copies of L12 proteins arranged in dimers that bind to the adjacent sites on protein L10, spanning 10 amino acids each from the L10 C-terminus. To study why multiple L12 dimers are required on the ribosome, we created a chromosomally engineered Escherichia coli strain, JE105, in which the peripheral L12 dimer binding site was deleted. Thus JE105 harbors ribosomes with only a single L12 dimer. Compared to MG1655, the parental strain with two L12 dimers, JE105 showed significant growth defect suggesting suboptimal function of the ribosomes with one L12 dimer. When tested in a cell-free reconstituted transcriptionâtranslation assay the synthesis of a full-length protein, firefly luciferase, was notably slower with JE105 70S ribosomes and 50S subunits. Further, in vitro analysis by fast kinetics revealed that single L12 dimer ribosomes from JE105 are defective in two major steps of translation, namely initiation and elongation involving translational GTPases IF2 and EF-G. Varying number of L12 dimers on the ribosome can be a mechanism in bacteria for modulating the rate of translation in response to growth condition
The Casimir force and the quantum theory of lossy optical cavities
We present a new derivation of the Casimir force between two parallel plane
mirrors at zero temperature. The two mirrors and the cavity they enclose are
treated as quantum optical networks. They are in general lossy and
characterized by frequency dependent reflection amplitudes. The additional
fluctuations accompanying losses are deduced from expressions of the optical
theorem. A general proof is given for the theorem relating the spectral density
inside the cavity to the reflection amplitudes seen by the inner fields. This
density determines the vacuum radiation pressure and, therefore, the Casimir
force. The force is obtained as an integral over the real frequencies,
including the contribution of evanescent waves besides that of ordinary waves,
and, then, as an integral over imaginary frequencies. The demonstration relies
only on general properties obeyed by real mirrors which also enforce general
constraints for the variation of the Casimir force.Comment: 18 pages, 6 figures, minor amendment
- âŠ