Abstract

We develop a method to compute the Casimir effect for arbitrary geometries. The method is based on the string-inspired worldline approach to quantum field theory and its numerical realization with Monte-Carlo techniques. Concentrating on Casimir forces between rigid bodies induced by a fluctuating scalar field, we test our method with the parallel-plate configuration. For the experimentally relevant sphere-plate configuration, we study curvature effects quantitatively and perform a comparison with the ``proximity force approximation'', which is the standard approximation technique. Sizable curvature effects are found for a distance-to-curvature-radius ratio of a/R >~ 0.02. Our method is embedded in renormalizable quantum field theory with a controlled treatment of the UV divergencies. As a technical by-product, we develop various efficient algorithms for generating closed-loop ensembles with Gaussian distribution.Comment: 27 pages, 10 figures, Sect. 2.1 more self-contained, improved data for Fig. 6, minor corrections, new Refs, version to be published in JHE

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019