43 research outputs found

    Molecular diagnostics helps to identify distinct subgroups of spinal astrocytomas

    Get PDF
    Primary spinal cord astrocytomas are rare, hence few data exist about the prognostic significance of molecular markers. Here we analyze a panel of molecular alterations in association with the clinical course. Histology and genome sequencing was performed in 26 spinal astrocytomas operated upon between 2000 and 2020. Next-generation DNA/RNA sequencing (NGS) and methylome analysis were performed to determine molecular alterations. Histology and NGS allowed the distinction of 5 tumor subgroups: glioblastoma IDH wildtype (GBM); diffuse midline glioma H3 K27M mutated (DMG-H3); high-grade astrocytoma with piloid features (HAP); diffuse astrocytoma IDH mutated (DA), diffuse leptomeningeal glioneural tumors (DGLN) and pilocytic astrocytoma (PA). Within all tumor entities GBM (median OS: 5.5~months), DMG-H3 (median OS: 13~months) and HAP (median OS: 8~months) showed a fatal prognosis. DMG-H3 tend to emerge in adolescence whereas GBM and HAP develop in the elderly. HAP are characterized by CDKN2A/B deletion and ATRX mutation. 50% of PA tumors carried a mutation in the PIK3CA gene which is seemingly associated with better outcome (median OS: PIK3CA mutated 107.5 vs 45.5~months in wildtype PA). This exploratory molecular profiling of spinal cord astrocytomas allows to identify distinct subgroups by combining molecular markers and histomorphology. DMG-H3 tend to develop in adolescence with a similar dismal prognosis like GBM and HAP in the elderly. We here describe spinal HAP with a distinct molecular profile for the first time

    Effect of SGLT2 inhibitors on stroke and atrial fibrillation in diabetic kidney disease: Results from the CREDENCE trial and meta-analysis

    Get PDF
    BACKGROUND AND PURPOSE: Chronic kidney disease with reduced estimated glomerular filtration rate or elevated albuminuria increases risk for ischemic and hemorrhagic stroke. This study assessed the effects of sodium glucose cotransporter 2 inhibitors (SGLT2i) on stroke and atrial fibrillation/flutter (AF/AFL) from CREDENCE (Canagliflozin and Renal Events in Diabetes With Established Nephropathy Clinical Evaluation) and a meta-Analysis of large cardiovascular outcome trials (CVOTs) of SGLT2i in type 2 diabetes mellitus. METHODS: CREDENCE randomized 4401 participants with type 2 diabetes mellitus and chronic kidney disease to canagliflozin or placebo. Post hoc, we estimated effects on fatal or nonfatal stroke, stroke subtypes, and intermediate markers of stroke risk including AF/AFL. Stroke and AF/AFL data from 3 other completed large CVOTs and CREDENCE were pooled using random-effects meta-Analysis. RESULTS: In CREDENCE, 142 participants experienced a stroke during follow-up (10.9/1000 patient-years with canagliflozin, 14.2/1000 patient-years with placebo; hazard ratio [HR], 0.77 [95% CI, 0.55-1.08]). Effects by stroke subtypes were: ischemic (HR, 0.88 [95% CI, 0.61-1.28]; n=111), hemorrhagic (HR, 0.50 [95% CI, 0.19-1.32]; n=18), and undetermined (HR, 0.54 [95% CI, 0.20-1.46]; n=17). There was no clear effect on AF/AFL (HR, 0.76 [95% CI, 0.53-1.10]; n=115). The overall effects in the 4 CVOTs combined were: Total stroke (HRpooled, 0.96 [95% CI, 0.82-1.12]), ischemic stroke (HRpooled, 1.01 [95% CI, 0.89-1.14]), hemorrhagic stroke (HRpooled, 0.50 [95% CI, 0.30-0.83]), undetermined stroke (HRpooled, 0.86 [95% CI, 0.49-1.51]), and AF/AFL (HRpooled, 0.81 [95% CI, 0.71-0.93]). There was evidence that SGLT2i effects on total stroke varied by baseline estimated glomerular filtration rate (P=0.01), with protection in the lowest estimated glomerular filtration rate (45 mL/min/1.73 m2]) subgroup (HRpooled, 0.50 [95% CI, 0.31-0.79]). CONCLUSIONS: Although we found no clear effect of SGLT2i on total stroke in CREDENCE or across trials combined, there was some evidence of benefit in preventing hemorrhagic stroke and AF/AFL, as well as total stroke for those with lowest estimated glomerular filtration rate. Future research should focus on confirming these data and exploring potential mechanisms

    Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to 300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m 2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to &lt;90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], &gt;300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of &lt;15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P&lt;0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P&lt;0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Opportunities and challenges in phenotypic drug discovery: An industry perspective

    No full text
    Phenotypic drug discovery (PDD) approaches do not rely on knowledge of the identity of a specific drug target or a hypothesis about its role in disease, in contrast to the target-based strategies that have been widely used in the pharmaceutical industry in the past three decades. However, in recent years, there has been a resurgence in interest in PDD approaches based on their potential to address the incompletely understood complexity of diseases and their promise of delivering first-in-class drugs, as well as major advances in the tools for cell-based phenotypic screening. Nevertheless, PDD approaches also have considerable challenges, such as hit validation and target deconvolution. This article focuses on the lessons learned by researchers engaged in PDD in the pharmaceutical industry and considers the impact of 'omics' knowledge in defining a cellular disease phenotype in the era of precision medicine, introducing the concept of a chain of translatability. We particularly aim to identify features and areas in which PDD can best deliver value to drug discovery portfolios and can contribute to the identification and the development of novel medicines, and to illustrate the challenges and uncertainties that are associated with PDD in order to help set realistic expectations with regard to its benefits and costs

    The discovery of first-in-class drugs: origins and evolution

    No full text
    Recent analyses claim phenotypic screening to be superior to target-based approaches for drug discovery. However, looking at the etiology and chronology of events that led to the approval of all 106 first-in-class drugs from 1999 to 2012, we realized that the majority of these (73) were discovered through target-based approaches. Of 31 drugs identified in the absence of a target hypothesis only 7 were found using true phenotypic screening. The discovery of the other 24 ‘phenotypic’ drugs occurred through a chemocentric approach where a particular compound with known pharmacology served as the starting point. We also found that the median time from first disclosure of the concept (target, pathway, chemotype) to FDA approval was 25 years for non-target-based and 20 years for target-based drugs. Few of the non-target based drugs had their origin after 1985, the time around which the technologies necessary for target-based approaches were established. We conclude that target-based drug discovery is successful, and recognize that HTS and other innovations applied in the past 25 years have only recently started to have a major impact on new approvals. We further suggest viewing phenotypic screening as a logical evolution of target-based approaches and consider it a novel discipline rather than a neoclassic approach, with all implications

    Low-molecular weight inhibitors of the alternative complement pathway.

    No full text
    Dysregulation of the alternative complement pathway predisposes individuals to a number of diseases. It can either be evoked by genetic alterations in or by stabilizing antibodies to important pathway components and typically leads to severe diseases such as paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, C3 glomerulopathy, and age-related macular degeneration. In addition, the alternative pathway may also be involved in many other diseases where its amplifying function for all complement pathways might play a role. To identify specific alternative pathway inhibitors that qualify as therapeutics for these diseases, drug discovery efforts have focused on the two central proteases of the pathway, factor B and factor D. Although drug discovery has been challenging for a number of reasons, potent and selective low-molecular weight (LMW) oral inhibitors have now been discovered for both proteases and several molecules are in clinical development for multiple complement-mediated diseases. While the clinical development of these inhibitors initially focuses on diseases with systemic and/or peripheral tissue complement activation, the availability of LMW inhibitors may also open up the prospect of inhibiting complement in the central nervous system where its activation may also play an important role in several neurodegenerative diseases

    Aspartic proteases in drug discovery.

    No full text
    Aspartic proteases are the smallest class of human proteases with only 15 members. Over the past years, they have received considerable attention as potential targets for pharmaceutical intervention since many have been shown to play important roles in physiological and pathological processes. Despite numerous efforts, however, the only inhibitors for aspartic proteases currently on the market are directed against the HIV protease, an aspartic protease of viral origin. Nevertheless, several inhibitors including those targeting renin, BACE1 and gamma-secretase are in clinical or preclinical development, and some other aspartic proteases are discussed as potential drug target. The crystal structures of seven human aspartic proteases have now been solved and, together with a detailed kinetic understanding of their catalytic mechanism, this has greatly contributed to the design and discovery of novel inhibitors for this protease class. This review describes current aspartic protease drug targets and summarizes the drug discovery efforts in this field. In addition, it highlights recent developments which may lead to a new generation of aspartic protease inhibitors

    SharePoint 2010 as a Development Platform

    No full text
    SharePoint is gaining recognition as a full-fledged application server with many features and enhancements that specifically allow non-developers to create sophisticated intranet sites. However, with the 2010 release, Microsoft's SharePoint increasingly becomes a compelling development platform. The strong application programming interface (API), its highly extensible nature, and its foundation on the underlying .NET Framework all generate "the perfect storm&quot; to make it one of the most powerful web development platforms available. However, with power comes complexity. The wide range of u

    SNPase-ARMS qPCR: Ultrasensitive Mutation-Based Detection of Cell-Free Tumor DNA in Melanoma Patients.

    No full text
    Cell-free circulating tumor DNA in the plasma of cancer patients has become a common point of interest as indicator of therapy options and treatment response in clinical cancer research. Especially patient- and tumor-specific single nucleotide variants that accurately distinguish tumor DNA from wild type DNA are promising targets. The reliable detection and quantification of these single-base DNA variants is technically challenging. Currently, a variety of techniques is applied, with no apparent "gold standard". Here we present a novel qPCR protocol that meets the conditions of extreme sensitivity and specificity that are required for detection and quantification of tumor DNA. By consecutive application of two polymerases, one of them designed for extreme base-specificity, the method reaches unprecedented sensitivity and specificity. Three qPCR assays were tested with spike-in experiments, specific for point mutations BRAF V600E, PTEN T167A and NRAS Q61L of melanoma cell lines. It was possible to detect down to one copy of tumor DNA per reaction (Poisson distribution), at a background of up to 200 000 wild type DNAs. To prove its clinical applicability, the method was successfully tested on a small cohort of BRAF V600E positive melanoma patients
    corecore