203 research outputs found

    Soil Metabolome Response to Whole-Ecosystem Warming at the Spruce and Peatland Responses Under Changing Environments Experiment

    Get PDF
    While peatlands have historically stored massive amounts of soil carbon, warming is expected to enhance decomposition, leading to a positive feedback with climate change. In this study, a unique whole-ecosystem warming experiment was conducted in northern Minnesota to warm peat profiles to 2 m deep while keeping water flow intact. After nearly 2 y, warming enhanced the degradation of soil organic matter and increased greenhouse gas production. Changes in organic matter quality with warming were accompanied by a stimulation of methane production relative to carbon dioxide. Our results revealed increased decomposition to be fueled by the availability of reactive carbon substrates produced by surface vegetation. The elevated rates of methanogenesis are likely to persist and exacerbate climate warming

    Simplified Models for LHC New Physics Searches

    Get PDF
    This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the "Topologies for Early LHC Searches" workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first ~50-500 pb-1 of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.Comment: 40 pages, 2 figures. This document is the official summary of results from "Topologies for Early LHC Searches" workshop (SLAC, September 2010). Supplementary material can be found at http://lhcnewphysics.or

    The landscape of somatic copy-number alteration across human cancers

    Get PDF
    available in PMC 2010 August 18.A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-κΒ pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P50CA90578)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, R01CA109038))National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, R01CA109467)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P01CA085859)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P01CA 098101)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, K08CA122833

    Climate change challenges, plant science solutions

    Get PDF
    Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    A systematic review of the implementation and impact of asthma protocols

    Get PDF

    Periplasmic Acid Stress Increases Cell Division Asymmetry (Polar Aging) of <i>Escherichia coli</i>

    No full text
    <div><p>Under certain kinds of cytoplasmic stress, <i>Escherichia coli</i> selectively reproduce by distributing the newer cytoplasmic components to new-pole cells while sequestering older, damaged components in cells inheriting the old pole. This phenomenon is termed polar aging or cell division asymmetry. It is unknown whether cell division asymmetry can arise from a periplasmic stress, such as the stress of extracellular acid, which is mediated by the periplasm. We tested the effect of periplasmic acid stress on growth and division of adherent single cells. We tracked individual cell lineages over five or more generations, using fluorescence microscopy with ratiometric pHluorin to measure cytoplasmic pH. Adherent colonies were perfused continually with LBK medium buffered at pH 6.00 or at pH 7.50; the external pH determines periplasmic pH. In each experiment, cell lineages were mapped to correlate division time, pole age and cell generation number. In colonies perfused at pH 6.0, the cells inheriting the oldest pole divided significantly more slowly than the cells inheriting the newest pole. In colonies perfused at pH 7.50 (near or above cytoplasmic pH), no significant cell division asymmetry was observed. Under both conditions (periplasmic pH 6.0 or pH 7.5) the cells maintained cytoplasmic pH values at 7.2–7.3. No evidence of cytoplasmic protein aggregation was seen. Thus, periplasmic acid stress leads to cell division asymmetry with minimal cytoplasmic stress.</p></div

    Targeted curation of the gut microbial gene content modulating human cardiovascular disease

    No full text
    ABSTRACT Despite the promise of the gut microbiome to predict human health, few studies expose the molecular-scale processes underpinning such forecasts. We mined over 200,000 gut-derived genomes from cultivated and uncultivated microbial lineages to inventory the gut microorganisms and their gene content that control trimethylamine-induced cardiovascular disease. We assigned an atherosclerotic profile to the 6,341 microbial genomes that encoded metabolisms associated with heart disease, creating the Methylated Amine Gene Inventory of Catabolism database (MAGICdb). From microbiome gene expression data sets, we demonstrate that MAGICdb enhanced the recovery of disease-relevant genes and identified the most active microorganisms, unveiling future therapeutic targets. From the feces of healthy and diseased subjects, we show that MAGICdb predicted cardiovascular disease status as effectively as traditional lipid blood tests. This functional microbiome catalog is a public, exploitable resource, designed to enable a new era of microbiota-based therapeutics and diagnostics. IMPORTANCE One of the most-cited examples of the gut microbiome modulating human disease is the microbial metabolism of quaternary amines from protein-rich foods. By-products of this microbial processing promote atherosclerotic heart disease, a leading cause of human mortality globally. Our research addresses current knowledge gaps in our understanding of this microbial metabolism by holistically inventorying the microorganisms and expressed genes catalyzing critical atherosclerosis-promoting and -ameliorating reactions in the human gut. This led to the creation of an open-access resource, the Methylated Amine Gene Inventory of Catabolism database, the first systematic inventory of gut methylated amine metabolism. More importantly, using this resource we deliver here, we show for the first time that these gut microbial genes can predict human disease, paving the way for microbiota-inspired diagnostics and interventions

    Cell half-lineages A and B in colonies perfused at pH 6.0.

    No full text
    <p>Half-lineages A and B each include six generations of cells dividing. Each box represents a single cell at that time point. Individual poles of the cell and their corresponding pole age are labeled according to the color scale in the upper right hand corner. Each cell in the half-lineage is given a distinct number (left of the box). Cell numbers are standardized across all lineages. Colors correspond to the relative polar ages of each cell. Time (min) at each box indicate the division time of that cell, the time from initial existence of the cell until the point where it divided into two daughter cells. Time (min) in red beneath the final division indicates the time the cell existed until the experiment was ended.</p

    Differences in mean division rates of old-pole and new-pole cell lines.

    No full text
    <p>The stacked histograms represent the differences in average division times (old-pole cell line minus new-pole cell line) for each half-lineage. Mean division times for the old-pole line and new-pole line were calculated for each lineage, resulting in replicate pairs. The distribution of these pairwise differences is non-normal (Anderson-Darling p-value < 0.005, indicating strong deviation from normality). Non-parametric tests were used including a Wilcoxon signed rank test and a resampling permutation test.</p
    • …
    corecore