802 research outputs found

    Genomic analysis of dominance effects on milk production and conformation traits in Fleckvieh cattle

    Get PDF
    Background Estimates of dominance variance in dairy cattle based on pedigree data vary considerably across traits and amount to up to 50% of the total genetic variance for conformation traits and up to 43% for milk production traits. Using bovine SNP (single nucleotide polymorphism) genotypes, dominance variance can be estimated both at the marker level and at the animal level using genomic dominance effect relationship matrices. Yield deviations of high-density genotyped Fleckvieh cows were used to assess cross-validation accuracy of genomic predictions with additive and dominance models. The potential use of dominance variance in planned matings was also investigated. Results Variance components of nine milk production and conformation traits were estimated with additive and dominance models using yield deviations of 1996 Fleckvieh cows and ranged from 3.3% to 50.5% of the total genetic variance. REML and Gibbs sampling estimates showed good concordance. Although standard errors of estimates of dominance variance were rather large, estimates of dominance variance for milk, fat and protein yields, somatic cell score and milkability were significantly different from 0. Cross-validation accuracy of predicted breeding values was higher with genomic models than with the pedigree model. Inclusion of dominance effects did not increase the accuracy of the predicted breeding and total genetic values. Additive and dominance SNP effects for milk yield and protein yield were estimated with a BLUP (best linear unbiased prediction) model and used to calculate expectations of breeding values and total genetic values for putative offspring. Selection on total genetic value instead of breeding value would result in a larger expected total genetic superiority in progeny, i.e. 14.8% for milk yield and 27.8% for protein yield and reduce the expected additive genetic gain only by 4.5% for milk yield and 2.6% for protein yield. Conclusions Estimated dominance variance was substantial for most of the analyzed traits. Due to small dominance effect relationships between cows, predictions of individual dominance deviations were very inaccurate and including dominance in the model did not improve prediction accuracy in the cross-validation study. Exploitation of dominance variance in assortative matings was promising and did not appear to severely compromise additive genetic gain

    Graphene-edge dielectrophoretic tweezers for trapping of biomolecules

    Get PDF
    The many unique properties of graphene, such as the tunable optical, electrical, and plasmonic response make it ideally suited for applications such as biosensing. As with other surface-based biosensors, however, the performance is limited by the diffusive transport of target molecules to the surface. Here we show that atomically sharp edges of monolayer graphene can generate singular electrical field gradients for trapping biomolecules via dielectrophoresis. Graphene-edge dielectrophoresis pushes the physical limit of gradient-force-based trapping by creating atomically sharp tweezers. We have fabricated locally backgated devices with an 8-nm-thick HfO2 dielectric layer and chemical-vapor-deposited graphene to generate 10× higher gradient forces as compared to metal electrodes. We further demonstrate near-100% position-controlled particle trapping at voltages as low as 0.45 V with nanodiamonds, nanobeads, and DNA from bulk solution within seconds. This trapping scheme can be seamlessly integrated with sensors utilizing graphene as well as other two-dimensional materials

    Optical Detection Of Paramagnetic Resonance In The Excited State Of F Centers In Cao

    Get PDF
    A detailed analysis of this double-resonance experiment shows that the emission takes place from the P3 excited level whose degeneracy is lifted by the Jahn-Teller coupling to Eg modes of vibration. An energy-level crossing effect is observed and its origin discussed. © 1972 The American Physical Society.28191268127

    Nanopore detection using supercharged polypeptide molecular carriers

    Get PDF
    The analysis at the single-molecule level of proteins and their interactions can provide critical information for understanding biological processes and diseases, particularly for proteins present in biological samples with low copy numbers. Nanopore sensing is an analytical technique that allows label-free detection of single proteins in solution and is ideally suited to applications, such as studying protein-protein interactions, biomarker screening, drug discovery, and even protein sequencing. However, given the current spatiotemporal limitations in protein nanopore sensing, challenges remain in controlling protein translocation through a nanopore and relating protein structures and functions with nanopore readouts. Here, we demonstrate that supercharged unstructured polypeptides (SUPs) can be genetically fused with proteins of interest and used as molecular carriers to facilitate nanopore detection of proteins. We show that cationic SUPs can substantially slow down the translocation of target proteins due to their electrostatic interactions with the nanopore surface. This approach enables the differentiation of individual proteins with different sizes and shapes via characteristic subpeaks in the nanopore current, thus facilitating a viable route to use polypeptide molecular carriers to control molecular transport and as a potential system to study protein-protein interactions at the single-molecule level

    Cross-country comparison of strategies for building consumer trust in food

    Get PDF
    Consumer trust in the modern food system is essential given its complexity. Contexts vary across countries with regard to food incidents, regulation and systems. It is therefore of interest to compare how key actors in different countries might approach (re)building consumer trust in the food system; and particularly relevant to understanding how food systems in different regions might learn from one another. The purpose of this paper is to explore differences between strategies for (re)building trust in food systems, as identified in two separate empirical studies, one conducted in Australia, New Zealand and the UK (Study 1) and another on the Island of Ireland (Study 2). Interviews were conducted with media, food industry and food regulatory actors across the two studies (n = 105 Study 1; n = 50 Study 2). Data were coded into strategy statements, strategies describing actions to (re)build consumer trust. Strategy statements were compared between Studies 1 and 2 and similarities and differences were noted. The strategy statements identified in Study 1 to (re)build consumer trust in the food system were shown to be applicable in Study 2, however, there were notable differences in the contextual factors that shaped the means by which strategies were implemented. As such, the transfer of such approaches across regions is not an appropriate means to addressing breaches in consumer trust. Notwithstanding, our data suggest that there is still capacity to learn between countries when considering strategies for (re)building trust in the food system but caution must be exercised in the transfer of approaches
    corecore