33 research outputs found

    Measurement of the mass difference m(D-s(+))-m(D+) at CDF II

    Get PDF
    We present a measurement of the mass difference m(D-s(+))-m(D+), where both the D-s(+) and D+ are reconstructed in the phipi(+) decay channel. This measurement uses 11.6 pb(-1) of data collected by CDF II using the new displaced-track trigger. The mass difference is found to be m(D-s(+))-m(D+)=99.41+/-0.38(stat)+/-0.21(syst) MeV/c(2)

    Climatologic studies inside Sandy Glacier at Mount Hood Volcano in Oregon, USA

    No full text
    Previous investigations of climatic conditions of glaciers primarily focused on the glacier’s surface or on the moulin as the entrance to the glacier’s interior. Many glaciers, however, contain far-reaching cave systems inside the ice that have been understood and investigated as drainage systems for meltwater. Until now, there have been no comprehensive climate studies inside a glacier cave. Thus, the climatic conditions, as well as their effects on the glacier, are unknown. The first climatologic investigations inside the cave system of Sandy Glacier on Mt. Hood in Oregon (USA) in June 2015 have shown that both thermic activity of the volcanic subsurface and chimney effects between the glacier snout at the base of the glacier and higher opening of the moulin can cause drastic melting inside the glacier. Those processes lead to considerably stronger melting from the inside than observations at the surface suggest and can cause an unexpected collapse over a distance of several hundred meters. We will present and assess the first measuring results of both the thermic and flow conditions inside Sandy Glacier

    Climatologic studies inside Sandy Glacier at Mount Hood Volcano in Oregon, USA

    No full text
    Previous investigations of climatic conditions of glaciers primarily focused on the glacier’s surface or on the moulin as the entrance to the glacier’s interior. Many glaciers, however, contain far-reaching cave systems inside the ice that have been understood and investigated as drainage systems for meltwater. Until now, there have been no comprehensive climate studies inside a glacier cave. Thus, the climatic conditions, as well as their effects on the glacier, are unknown. The first climatologic investigations inside the cave system of Sandy Glacier on Mt. Hood in Oregon (USA) in June 2015 have shown that both thermic activity of the volcanic subsurface and chimney effects between the glacier snout at the base of the glacier and higher opening of the moulin can cause drastic melting inside the glacier. Those processes lead to considerably stronger melting from the inside than observations at the surface suggest and can cause an unexpected collapse over a distance of several hundred meters. We will present and assess the first measuring results of both the thermic and flow conditions inside Sandy Glacier
    corecore