10 research outputs found

    Selenium in reproduction

    Get PDF
    Selenium is an essential trace element of importance to human biology and health. Increasing evidence suggests that this mineral plays an important role in normal growth and reproduction in animals and humans, and selenium supplementation is now recommended as part of public health policy in geographical areas with severe selenium deficiency in soil. This review addresses the biological functions of selenium followed by a detailed review of associations between selenium status and reproductive health. In many countries, selenium dietary intake falls below the recommended nutrient intakes and is inadequate to support maximal expression of the selenoenzymes. Numerous reports implicate selenium deficiency in several reproductive and obstetric complications including male and female infertility, miscarriage, preeclampsia, fetal growth restriction, preterm labor, gestational diabetes, and obstetric cholestasis. Currently, there is inadequate information from the available small intervention studies to inform public health strategies. Larger intervention trials are required to reinforce or refute a beneficial role of selenium supplementation in disorders of reproductive health

    Analysis of proteome-wide degradation dynamics in ALS SOD1 iPSC-derived patient neurons reveals disrupted VCP homeostasis

    No full text
    Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS) through gain-of-function effects, yet the mechanisms by which misfolded mutant SOD1 (mutSOD1) protein impairs human motor neurons (MNs) remain unclear. Here, we use induced-pluripotent-stem-cell-derived MNs coupled to metabolic stable isotope labeling and mass spectrometry to investigate proteome-wide degradation dynamics. We find several proteins, including the ALS-causal valosin-containing protein (VCP), which predominantly acts in proteasome degradation and autophagy, that degrade slower in mutSOD1 relative to isogenic control MNs. The interactome of VCP is altered in mutSOD1 MNs in vitro, while VCP selectively accumulates in the affected motor cortex of ALS-SOD1 patients. Overexpression of VCP rescues mutSOD1 toxicity in MNs in vitro and in a C. elegans model in vivo, in part due to its ability to modulate the degradation of insoluble mutSOD1. Our results demonstrate that VCP contributes to mutSOD1-dependent degeneration, link two distinct ALS-causal genes, and highlight selective protein degradation impairment in ALS pathophysiology

    BET1 variants establish impaired vesicular transport as a cause for muscular dystrophy with epilepsy.

    No full text
    BET1 is required, together with its SNARE complex partners GOSR2, SEC22b, and Syntaxin-5 for fusion of endoplasmic reticulum-derived vesicles with the ER-Golgi intermediate compartment (ERGIC) and the cis-Golgi. Here, we report three individuals, from two families, with severe congenital muscular dystrophy (CMD) and biallelic variants in BET1 (P1 p.(Asp68His)/p.(Ala45Valfs*2); P2 and P3 homozygous p.(Ile51Ser)). Due to aberrant splicing and frameshifting, the variants in P1 result in low BET1 protein levels and impaired ER-to-Golgi transport. Since in silico modeling suggested that p.(Ile51Ser) interferes with binding to interaction partners other than SNARE complex subunits, we set off and identified novel BET1 interaction partners with low affinity for p.(Ile51Ser) BET1 protein compared to wild-type, among them ERGIC-53. The BET1/ERGIC-53 interaction was validated by endogenous co-immunoprecipitation with both proteins colocalizing to the ERGIC compartment. Mislocalization of ERGIC-53 was observed in P1 and P2's derived fibroblasts; while in the p.(Ile51Ser) P2 fibroblasts specifically, mutant BET1 was also mislocalized along with ERGIC-53. Thus, we establish BET1 as a novel CMD/epilepsy gene and confirm the emerging role of ER/Golgi SNAREs in CMD
    corecore