30 research outputs found

    Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms

    Get PDF
    Sex differences in life history, physiology, and behavior are nearly ubiquitous across taxa, owing to sex-specific selection that arises from different reproductive strategies of the sexes. The pace-of-life syndrome (POLS) hypothesis predicts that most variation in such traits among individuals, populations, and species falls along a slow-fast pace-of-life continuum. As a result of their different reproductive roles and environment, the sexes also commonly differ in pace-of-life, with important consequences for the evolution of POLS. Here, we outline mechanisms for how males and females can evolve differences in POLS traits and in how such traits can covary differently despite constraints resulting from a shared genome. We review the current knowledge of the genetic basis of POLS traits and suggest candidate genes and pathways for future studies. Pleiotropic effects may govern many of the genetic correlations, but little is still known about the mechanisms involved in trade-offs between current and future reproduction and their integration with behavioral variation. We highlight the importance of metabolic and hormonal pathways in mediating sex differences in POLS traits; however, there is still a shortage of studies that test for sex specificity in molecular effects and their evolutionary causes. Considering whether and how sexual dimorphism evolves in POLS traits provides a more holistic framework to understand how behavioral variation is integrated with life histories and physiology, and we call for studies that focus on examining the sex-specific genetic architecture of this integration

    Stem cells and DNA repair capacity: Muse stem cells are among the best performers

    No full text
    Stem cells persist for long periods in the body and experience many intrinsic and extrinsic stresses. For this reason, they present a powerful and effective DNA repair system in order to properly fix DNA damage and avoid the onset of a degenerative process, such as neoplastic transformation or aging. In this chapter, we compare the DNA repair ability of pluripotent stem cells (ESCs, iPSCs, and Muse cells) and other adult stem cells. We also describe personal investigations showing a robust and effective capacity of Muse cells in sensing and repairing DNA following chemical and physical stress. Muse cells can repair DNA through base and nucleotide excision repair mechanisms, BER and NER, respectively. Furthermore, they present a pronounced capacity in repairing double-strand breaks by the nonhomologous end joining (NHEJ) process. The studies addressing the role of DNA damage repair in the biology of stem cells are of paramount importance for comprehension of their functions and, also, for setting up effective and safe stem cell-based therapy
    corecore