5,935 research outputs found

    Imaging Biomarker Validation and Qualification Report: 6th OARSI Workshop on Imaging in Osteoarthritis Combined with 3rd OA Biomarkers Workshop.

    Get PDF
    Summary The sixth Osteoarthritis Research Society International (OARSI) Workshop on Imaging in Osteoarthritis combined with the third osteoarthritis (OA) Biomarkers Workshop is the first to bring together the imaging and molecular biomarker communities to focus on clinical validation and qualification of OA biomarkers. The workshop was held in Hilton Head, SC, USA, from June 12ā€“14, 2012; 138 attendees participated, including representatives from academia, pharmaceutical and magnetic resonance imaging (MRI) industries, Food and Drug Administration (FDA), and National Institutes of Health (NIH). Presentations and discussions raised awareness, consolidated knowledge, and identified strategies to overcome challenges for the development and application of imaging and biochemical biomarkers in OA research studies and clinical trials. Conclusion The OA research communities need to work alongside regulatory agencies across the world, to qualify and validate new chemical and imaging biomarkers for future research and clinical trials

    Imaging of Osteoarthritis

    Get PDF
    Osteoarthritis (OA) is the most prevalent joint disorder in the elderly, and there is no effective treatment. Imaging is essential for evaluating the synovial joint structures (including cartilage, meniscus, subchondral bone marrow and synovium) for diagnosis, prognosis, and follow-up. This article describes the roles and limitations of both conventional radiography and magnetic resonance (MR) imaging, and considers the use of other modalities (eg, ultrasonography, nuclear medicine, computed tomography [CT], and CT/MR arthrography) in clinical practice and OA research. The emphasis throughout is on OA of the knee. This article emphasizes research developments and literature evidence published since 2008

    In-situ strain tuning of the Dirac surface states in Bi2Se3 films

    Full text link
    Elastic strain has the potential for a controlled manipulation of the band gap and spin-polarized Dirac states of topological materials, which can lead to pseudo-magnetic-field effects, helical flat bands and topological phase transitions. However, practical realization of these exotic phenomena is challenging and yet to be achieved. Here, we show that the Dirac surface states of the topological insulator Bi2Se3 can be reversibly tuned by an externally applied elastic strain. Performing in-situ x-ray diffraction and in-situ angle-resolved photoemission spectroscopy measurements during tensile testing of epitaxial Bi2Se3 films bonded onto a flexible substrate, we demonstrate elastic strains of up to 2.1% and quantify the resulting reversible changes in the topological surface state. Our study establishes the functional relationship between the lattice and electronic structures of Bi2Se3 and, more generally, demonstrates a new route toward momentum-resolved mapping of strain-induced band structure changes

    Metabolic heterogeneity of human hepatocellular carcinoma: implications for personalized pharmacological treatment

    Get PDF
    Metabolic reprogramming is a characteristic feature of cancer cells, but there is no unique metabolic program for all tumors. Genetic and gene expression studies have revealed heterogeneous inter- and intratumor patterns of metabolic enzymes and membrane transporters. The functional implications of this heterogeneity remain often elusive. Here, we applied a systems biology approach to gain a comprehensive and quantitative picture of metabolic changes in individual hepatocellular carcinoma (HCC). We used protein intensity profiles determined by mass spectrometry in samples of 10 human HCCs and the adjacent noncancerous tissue to calibrate Hepatokin1, a complex mathematical model of liver metabolism. We computed the 24-h profile of 18 metabolic functions related to carbohydrate, lipid, and nitrogen metabolism. There was a general tendency among the tumors toward downregulated glucose uptake and glucose release albeit with large intertumor variability. This finding calls into question that the Warburg effect dictates the metabolic phenotype of HCC. All tumors comprised elevated Ī²-oxidation rates. Urea synthesis was found to be consistently downregulated but without compromising the tumor's capacity for ammonia detoxification owing to increased glutamine synthesis. The largest intertumor heterogeneity was found for the uptake and release of lactate and the size of the cellular glycogen content. In line with the observed metabolic heterogeneity, the individual HCCs differed largely in their vulnerability against pharmacological treatment with metformin. Taken together, our approach provided a comprehensive and quantitative characterization of HCC metabolism that may pave the way for a computational a priori assessment of pharmacological therapies targeting metabolic processes of HCC

    Functional Consequences of Metabolic Zonation in Murine Livers: Insights for an Old Story

    Get PDF
    Background and Aims: Zone-dependent differences in expression of metabolic enzymes along the portocentral axis of the acinus are a long-known feature of liver metabolism. A prominent example is the preferential localization of the enzyme, glutamine synthetase, in pericentral hepatocytes, where it converts potentially toxic ammonia to the valuable amino acid, glutamine. However, with the exception of a few key regulatory enzymes, a comprehensive and quantitative assessment of zonal differences in the abundance of metabolic enzymes and, much more important, an estimation of the associated functional differences between portal and central hepatocytes is missing thus far. Approach and Results: We addressed this problem by establishing a method for the separation of periportal and pericentral hepatocytes that yields sufficiently pure fractions of both cell populations. Quantitative shotgun proteomics identified hundreds of differentially expressed enzymes in the two cell populations. We used zone-specific proteomics data for scaling of the maximal activities to generate portal and central instantiations of a comprehensive kinetic model of central hepatic metabolism (Hepatokin1). Conclusions: The model simulations revealed significant portal-to-central differences in almost all metabolic pathways involving carbohydrates, fatty acids, amino acids, and detoxification

    Side Differences of Thigh Muscle Cross-Sectional Areas and Maximal Isometric Muscle Force in Bilateral Knees with the Same Radiographic Disease Stage, but Unilateral Frequent Pain ā€“ Data from the Osteoarthritis Initiative

    Get PDF
    Objective To determine whether anatomical thigh muscle cross-sectional areas (MCSAs) and strength differ between osteoarthritis (OA) knees with frequent pain compared with contra-lateral knees without pain, and to examine the correlation between MCSAs and strength in painful vs painless knees. Methods Forty-eight subjects (31 women; 17 men; age 45ā€“78 years) were drawn from 4,796 Osteoarthritis Initiative (OAI) participants, in whom both knees displayed the same radiographic stage (KLG2 or 3), one with frequent pain (most days of the month within the past 12 months) and the contra-lateral one without pain. Axial MR images were used to determine MCSAs of extensors, flexors and adductors at 35% femoral length (distal to proximal) and in two adjacent 5 mm images. Maximal isometric extensor and flexor forces were used as provided from the OAI database. Results Painful knees showed 5.2% lower extensor MCSAs (P = 0.00003; paired t-test), and 7.8% lower maximal extensor muscle forces (P = 0.003) than contra-lateral painless knees. There were no significant differences in flexor forces, or flexor and adductor MCSAs (P > 0.39). Correlations between force and MCSAs were similar in painful and painless OA knees (0.44 < r < 0.66). Conclusions Knees with frequent pain demonstrate lower MCSAs and force of the quadriceps (but not of other thigh muscles) compared with contra-lateral knees without knee pain with the same radiographic stage. Frequent pain does not appear to affect the correlations between MCSAs and strength in OA knees. The findings suggest that quadriceps strengthening exercise may be useful in treating symptomatic knee OA

    Moderate physical activity may prevent cartilage loss in women with knee osteoarthritis : data from the Osteoarthritis Initiative

    Get PDF
    All authors have completed the ICMJE uniform disclosure form at http://www.icmje.org/coi_disclosure.pdf and declare: data acquisition in this study was funded by the Osteoarthritis Initiative, a publicā€“private partnership comprised of five contracts (N01-AR-2-2258; N01-AR-2-2259;N01-AR-2-2260; N01-AR-2-2261; N01-AR-2-2262) funded by the National Institutes of Health, a branch of the Department of Health and Human Services, and conducted by the Osteoarthritis Initiative study Investigators. Private funding partners of the OAI include Merck Research Laboratories, Novartis Pharmaceuticals Corporation, GlaxoSmithKline, and Pfizer, Inc. Private sector funding for the Osteoarthritis Initiative is managed by the Foundation for the National Institutes of Health. The image analysis in this study was partly funded by the FNIH OA Biomarkers Consortium, with grants, direct and in -kind contributions, provided by: AbbVie; Amgen Inc.; Arthritis Foundation; Bioiberica S.A.; DePuy Mitek, Inc.; Flexion Therapeutics, Inc.; GlaxoSmithKline; Merck KGaA; Rottapharm | Madaus; Sanofi; and Stryker. Other parts of funding were provided by a direct grant from Merck KGaA, by a contract with the University of Pittsburgh (Pivotal OAI MRI Analyses [POMA]: NIH/NHLBI Contract No. HHSN2682010000 21C), by a vendor contract from the OAI coordinating center at University of California, San Francisco (N01-AR-2-2258), and by an ancillary study to the OAI held by the Division of Rheumatology, Feinberg School of Medicine, Northwestern University (R01 AR52918). This research has also received funding from the European Union Seventh Framework Programme (FP7-PEOPLE-2013-ITN; KNEEMO) under grant agreement number 607510. AGC is supported by a National Health and Medical Research Council (NHMRC) of Australia Early Career Fellowship (Neil Hamilton Fairley Clinical Fellowship No.1121173). The sponsors were not involved in the design and conduct of this particular study, in the analysis and interpretation of the data, and in the preparation, review, or approval of the manuscript.Peer reviewedPostprin

    Tibial coverage, meniscus position, size and damage in knees discordant for joint space narrowing - data from the Osteoarthritis Initiative.

    Get PDF
    INTRODUCTION: Meniscal extrusion is thought to be associated with less meniscus coverage of the tibial surface, but the association of radiographic disease stage with quantitative measures of tibial plateau coverage is unknown. We therefore compared quantitative and semi-quantitative measures of meniscus position and morphology in individuals with bilateral painful knees discordant on medial joint space narrowing (mJSN). METHODS: A sample of 60 participants from the first half (2,678 cases) of the Osteoarthritis Initiative cohort fulfilled the inclusion criteria: bilateral frequent pain, Osteoarthritis Research Society International (OARSI) mJSN grades 1-3 in one, no-JSN in the contra-lateral (CL), and no lateral JSN in either knee (43 unilateral mJSN1; 17 mJSN2/3; 22 men, 38 women, body mass index (BMI) 31.3 + 3.9 kg/m(2)). Segmentation and three-dimensional quantitative analysis of the tibial plateau and meniscus, and semi-quantitative evaluation of meniscus damage (magnetic resonance imaging (MRI) osteoarthritis knee score = MOAKS) was performed using coronal 3T MR images (MPR DESSwe and intermediate-weighted turbo spin echo (IW-TSE) images). CL knees were compared using paired t-tests (between-knee, within-person design). RESULTS: Medial tibial plateau coverage was 36 + 9% in mJSN1 vs 45 + 8% in CL no-JSN knees, and was 31 + 9% in mJSN2/3 vs 46 + 6% in no-JSN knees (both P < 0.001). mJSN knees showed greater meniscus extrusion and damage (MOAKS), but no significant difference in meniscus volume. No significant differences in lateral tibial coverage, lateral meniscus morphology or position were observed. CONCLUSIONS: Knees with medial JSN showed substantially less medial tibial plateau coverage by the meniscus. We suggest that the less meniscal coverage, i.e., less mechanical protection may be a reason for greater rates of cartilage loss observed in JSN knees. Copyright 2012 Osteoarthritis Research Society International. All rights reserved
    • ā€¦
    corecore